Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53727 by Tawa1 last updated on 25/Jan/19

Answered by Kunal12588 last updated on 25/Jan/19

just trying  T_1 ,T_2 ,T_3 ,T_4 −lower cables  T_1 =T_2 =T_3 =T_4 =k       (identical cables)  (1/2)((√(2^2 +0.5^2 )))=h  tan^(−1) (2/h)=φ  4k cosφ−mg=0  4kcosφ=w  k=((4.9)/(4cosφ))  T_(upper) =4kcosφ      [not solved it bcuz i think its wrong]  please report with answer

$${just}\:{trying} \\ $$$${T}_{\mathrm{1}} ,{T}_{\mathrm{2}} ,{T}_{\mathrm{3}} ,{T}_{\mathrm{4}} −{lower}\:{cables} \\ $$$${T}_{\mathrm{1}} ={T}_{\mathrm{2}} ={T}_{\mathrm{3}} ={T}_{\mathrm{4}} ={k}\:\:\:\:\:\:\:\left({identical}\:{cables}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{0}.\mathrm{5}^{\mathrm{2}} }\right)={h} \\ $$$${tan}^{−\mathrm{1}} \left(\mathrm{2}/{h}\right)=\phi \\ $$$$\mathrm{4}{k}\:{cos}\phi−{mg}=\mathrm{0} \\ $$$$\mathrm{4}{kcos}\phi={w} \\ $$$${k}=\frac{\mathrm{4}.\mathrm{9}}{\mathrm{4}{cos}\phi} \\ $$$${T}_{{upper}} =\mathrm{4}{kcos}\phi\:\:\:\:\:\:\left[{not}\:{solved}\:{it}\:{bcuz}\:{i}\:{think}\:{its}\:{wrong}\right] \\ $$$${please}\:{report}\:{with}\:{answer} \\ $$

Commented by Tawa1 last updated on 25/Jan/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19

dimension of box=l×b×h  diagonal=(√(l^2 +b^2 )) =  tanθ=(h/((√(l^2 +b^2  ))/2))=((2h)/((√(l^2 +b^2 )) ))  4T_(lowercable) sinθ=mg  T_(lowercable) =((mg)/(4sinθ))  T_(upper) =mg

$${dimension}\:{of}\:{box}={l}×{b}×{h} \\ $$$${diagonal}=\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:= \\ $$$${tan}\theta=\frac{{h}}{\frac{\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} \:}}{\mathrm{2}}}=\frac{\mathrm{2}{h}}{\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:} \\ $$$$\mathrm{4}{T}_{{lowercable}} {sin}\theta={mg} \\ $$$${T}_{{lowercable}} =\frac{{mg}}{\mathrm{4}{sin}\theta} \\ $$$${T}_{{upper}} ={mg} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 25/Jan/19

God bless you sir. you can help me complete it if correct sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{you}\:\mathrm{can}\:\mathrm{help}\:\mathrm{me}\:\mathrm{complete}\:\mathrm{it}\:\mathrm{if}\:\mathrm{correct}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com