Question Number 53727 by Tawa1 last updated on 25/Jan/19 | ||
Answered by Kunal12588 last updated on 25/Jan/19 | ||
$${just}\:{trying} \\ $$$${T}_{\mathrm{1}} ,{T}_{\mathrm{2}} ,{T}_{\mathrm{3}} ,{T}_{\mathrm{4}} −{lower}\:{cables} \\ $$$${T}_{\mathrm{1}} ={T}_{\mathrm{2}} ={T}_{\mathrm{3}} ={T}_{\mathrm{4}} ={k}\:\:\:\:\:\:\:\left({identical}\:{cables}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{0}.\mathrm{5}^{\mathrm{2}} }\right)={h} \\ $$$${tan}^{−\mathrm{1}} \left(\mathrm{2}/{h}\right)=\phi \\ $$$$\mathrm{4}{k}\:{cos}\phi−{mg}=\mathrm{0} \\ $$$$\mathrm{4}{kcos}\phi={w} \\ $$$${k}=\frac{\mathrm{4}.\mathrm{9}}{\mathrm{4}{cos}\phi} \\ $$$${T}_{{upper}} =\mathrm{4}{kcos}\phi\:\:\:\:\:\:\left[{not}\:{solved}\:{it}\:{bcuz}\:{i}\:{think}\:{its}\:{wrong}\right] \\ $$$${please}\:{report}\:{with}\:{answer} \\ $$ | ||
Commented by Tawa1 last updated on 25/Jan/19 | ||
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19 | ||
$${dimension}\:{of}\:{box}={l}×{b}×{h} \\ $$$${diagonal}=\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:= \\ $$$${tan}\theta=\frac{{h}}{\frac{\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} \:}}{\mathrm{2}}}=\frac{\mathrm{2}{h}}{\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:} \\ $$$$\mathrm{4}{T}_{{lowercable}} {sin}\theta={mg} \\ $$$${T}_{{lowercable}} =\frac{{mg}}{\mathrm{4}{sin}\theta} \\ $$$${T}_{{upper}} ={mg} \\ $$$$ \\ $$ | ||
Commented by Tawa1 last updated on 25/Jan/19 | ||
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{you}\:\mathrm{can}\:\mathrm{help}\:\mathrm{me}\:\mathrm{complete}\:\mathrm{it}\:\mathrm{if}\:\mathrm{correct}\:\mathrm{sir}. \\ $$ | ||