Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53570 by ajfour last updated on 23/Jan/19

Commented by ajfour last updated on 23/Jan/19

Regular pentagon side a. Find the  central uncoloured area.

$${Regular}\:{pentagon}\:{side}\:{a}.\:{Find}\:{the} \\ $$$${central}\:{uncoloured}\:{area}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19

no comments  received..hence deleted

$${no}\:{comments}\:\:{received}..{hence}\:{deleted} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19

Commented by ajfour last updated on 23/Jan/19

as soon as i saw i had commented,  thanks sir, i remember your answer  even.    A_(white) = (a^2 /4)tan^2 27°(5cot 36°−((3π)/2))  it matched with what i could obtain.

$${as}\:{soon}\:{as}\:{i}\:{saw}\:{i}\:{had}\:{commented}, \\ $$$${thanks}\:{sir},\:{i}\:{remember}\:{your}\:{answer} \\ $$$${even}. \\ $$$$\:\:{A}_{{white}} =\:\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\mathrm{tan}\:^{\mathrm{2}} \mathrm{27}°\left(\mathrm{5cot}\:\mathrm{36}°−\frac{\mathrm{3}\pi}{\mathrm{2}}\right) \\ $$$${it}\:{matched}\:{with}\:{what}\:{i}\:{could}\:{obtain}. \\ $$

Commented by ajfour last updated on 23/Jan/19

Tanmay Sir, why you deleted your  posted solution ?

$${Tanmay}\:{Sir},\:{why}\:{you}\:{deleted}\:{your} \\ $$$${posted}\:{solution}\:? \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19

  tanα=(r/(a/2))               r=(a/2)tanα....(1)  5θ=2π                     θ=((2π)/5).....(2)  2β+θ=π        β=((π−((2π)/5))/2)=((3π)/(10 ))....(3)  now area of small pentagon...  5×(1/2)×2r×h  tan(θ/2)=(r/h)  so h=rcot(θ/2)  so area of small pentagon=5×(1/2)×2r×rcot((θ/2))  area of five sector of circle=5×((πr^2 )/(2π))×2β                                         =5r^2 β  so area of white centre star  =area of small pentagon−five sector area  =5r^2 cot((θ/2))−5r^2 β  =5r^2 [cot((θ/2))−β]  =5×((a/2)tanα)^2 [cot((θ/2))−β]  now  θ=((2π)/5)   β=((3π)/(10))    to find α...  using formula...  number of side=((360)/(external angke))  external angke=((360)/5)=72^o   internal+external angld=180^o   inyernsl angld=180^o −72=108^o   4α=108=  so α=27^o   hdnce required answer is  =★★ 5×((a/2)tanα)^2 [cot((θ/2))−β]★★  =5×((a/2)tan27^o )^2 [cot(((2π)/(5×2)))−((3π)/(10))]  =(a^2 /4)tan^2 27^o ×[5cot36^o −((3π)/2)]  now pls check...

$$ \\ $$$${tan}\alpha=\frac{{r}}{\frac{{a}}{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{r}=\frac{{a}}{\mathrm{2}}{tan}\alpha....\left(\mathrm{1}\right) \\ $$$$\mathrm{5}\theta=\mathrm{2}\pi\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\theta=\frac{\mathrm{2}\pi}{\mathrm{5}}.....\left(\mathrm{2}\right) \\ $$$$\mathrm{2}\beta+\theta=\pi\:\:\:\:\:\:\:\:\beta=\frac{\pi−\frac{\mathrm{2}\pi}{\mathrm{5}}}{\mathrm{2}}=\frac{\mathrm{3}\pi}{\mathrm{10}\:}....\left(\mathrm{3}\right) \\ $$$${now}\:{area}\:{of}\:{small}\:{pentagon}... \\ $$$$\mathrm{5}×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{r}×{h} \\ $$$${tan}\frac{\theta}{\mathrm{2}}=\frac{{r}}{{h}}\:\:{so}\:{h}={rcot}\frac{\theta}{\mathrm{2}} \\ $$$${so}\:{area}\:{of}\:{small}\:{pentagon}=\mathrm{5}×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{r}×{rcot}\left(\frac{\theta}{\mathrm{2}}\right) \\ $$$${area}\:{of}\:{five}\:{sector}\:{of}\:{circle}=\mathrm{5}×\frac{\pi{r}^{\mathrm{2}} }{\mathrm{2}\pi}×\mathrm{2}\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{5}{r}^{\mathrm{2}} \beta \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{area}}\:\boldsymbol{{of}}\:\boldsymbol{{white}}\:\boldsymbol{{centre}}\:\boldsymbol{{star}} \\ $$$$=\boldsymbol{{area}}\:\boldsymbol{{of}}\:\boldsymbol{{small}}\:\boldsymbol{{pentagon}}−\boldsymbol{{five}}\:\boldsymbol{{sector}}\:\boldsymbol{{area}} \\ $$$$=\mathrm{5}\boldsymbol{{r}}^{\mathrm{2}} \boldsymbol{{cot}}\left(\frac{\theta}{\mathrm{2}}\right)−\mathrm{5}\boldsymbol{{r}}^{\mathrm{2}} \beta \\ $$$$=\mathrm{5}{r}^{\mathrm{2}} \left[{cot}\left(\frac{\theta}{\mathrm{2}}\right)−\beta\right] \\ $$$$=\mathrm{5}×\left(\frac{{a}}{\mathrm{2}}{tan}\alpha\right)^{\mathrm{2}} \left[{cot}\left(\frac{\theta}{\mathrm{2}}\right)−\beta\right] \\ $$$${now}\:\:\theta=\frac{\mathrm{2}\pi}{\mathrm{5}}\:\:\:\beta=\frac{\mathrm{3}\pi}{\mathrm{10}}\:\: \\ $$$${to}\:{find}\:\alpha... \\ $$$${using}\:{formula}... \\ $$$${number}\:{of}\:{side}=\frac{\mathrm{360}}{{external}\:{angke}} \\ $$$${external}\:{angke}=\frac{\mathrm{360}}{\mathrm{5}}=\mathrm{72}^{{o}} \\ $$$${internal}+{external}\:{angld}=\mathrm{180}^{{o}} \\ $$$${inyernsl}\:{angld}=\mathrm{180}^{{o}} −\mathrm{72}=\mathrm{108}^{{o}} \\ $$$$\mathrm{4}\alpha=\mathrm{108}=\:\:\boldsymbol{{so}}\:\alpha=\mathrm{27}^{{o}} \\ $$$$\boldsymbol{{hdnce}}\:\boldsymbol{{required}}\:\boldsymbol{{answer}}\:\boldsymbol{{is}} \\ $$$$=\bigstar\bigstar\:\mathrm{5}×\left(\frac{{a}}{\mathrm{2}}{tan}\alpha\right)^{\mathrm{2}} \left[{cot}\left(\frac{\theta}{\mathrm{2}}\right)−\beta\right]\bigstar\bigstar \\ $$$$=\mathrm{5}×\left(\frac{{a}}{\mathrm{2}}{tan}\mathrm{27}^{{o}} \right)^{\mathrm{2}} \left[{cot}\left(\frac{\mathrm{2}\pi}{\mathrm{5}×\mathrm{2}}\right)−\frac{\mathrm{3}\pi}{\mathrm{10}}\right] \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}{tan}^{\mathrm{2}} \mathrm{27}^{{o}} ×\left[\mathrm{5}{cot}\mathrm{36}^{{o}} −\frac{\mathrm{3}\pi}{\mathrm{2}}\right] \\ $$$${now}\:{pls}\:{check}... \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19

thank you..

$${thank}\:{you}.. \\ $$

Answered by mr W last updated on 23/Jan/19

Commented by mr W last updated on 23/Jan/19

α=((2π)/(10))=(π/5)  (r+(r/(sin α)))tan α=(a/2)  r=((a cos α)/(2(1+sin α)))  A=10[(r^2 /(2 tan α))−(r^2 /2)((π/2)−α)]  A=5r^2 [α+(1/(tan α))−(π/2)]  A=((5a^2 cos^2  α)/(4(1+sin α)^2 ))[(π/5)+(1/(tan α))−(π/2)]  cos α=(((√5)+1)/4)  sin α=((√(2(5−(√5))))/4)  tan α=(√(5−2(√5)))  A=((a^2 cos^2  α)/(8(1+sin α)^2 ))[((10)/(tan α))−3π]  A=((a^2 ((√5)+1)^2 )/(8(4+(√(2(5−(√5))))^2 ))[((10(√(5+2(√5))))/(√5))−3π]  ⇒A=((a^2 (3+(√5))[2(√(5(5+2(√5))))−3π])/(8[13−(√5)+4(√(2(5−(√5))))]))≈0.14081a^2

$$\alpha=\frac{\mathrm{2}\pi}{\mathrm{10}}=\frac{\pi}{\mathrm{5}} \\ $$$$\left({r}+\frac{{r}}{\mathrm{sin}\:\alpha}\right)\mathrm{tan}\:\alpha=\frac{{a}}{\mathrm{2}} \\ $$$${r}=\frac{{a}\:\mathrm{cos}\:\alpha}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)} \\ $$$${A}=\mathrm{10}\left[\frac{{r}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}\:\alpha}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}−\alpha\right)\right] \\ $$$${A}=\mathrm{5}{r}^{\mathrm{2}} \left[\alpha+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}−\frac{\pi}{\mathrm{2}}\right] \\ $$$${A}=\frac{\mathrm{5}{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\alpha}{\mathrm{4}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)^{\mathrm{2}} }\left[\frac{\pi}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}−\frac{\pi}{\mathrm{2}}\right] \\ $$$$\mathrm{cos}\:\alpha=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{sin}\:\alpha=\frac{\sqrt{\mathrm{2}\left(\mathrm{5}−\sqrt{\mathrm{5}}\right)}}{\mathrm{4}} \\ $$$$\mathrm{tan}\:\alpha=\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${A}=\frac{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\alpha}{\mathrm{8}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)^{\mathrm{2}} }\left[\frac{\mathrm{10}}{\mathrm{tan}\:\alpha}−\mathrm{3}\pi\right] \\ $$$${A}=\frac{{a}^{\mathrm{2}} \left(\sqrt{\mathrm{5}}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{8}\left(\mathrm{4}+\sqrt{\mathrm{2}\left(\mathrm{5}−\sqrt{\mathrm{5}}\right.}\right)^{\mathrm{2}} }\left[\frac{\mathrm{10}\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}}}{\sqrt{\mathrm{5}}}−\mathrm{3}\pi\right] \\ $$$$\Rightarrow{A}=\frac{\left.{a}^{\mathrm{2}} \left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left[\mathrm{2}\sqrt{\mathrm{5}\left(\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}\right.}\right)−\mathrm{3}\pi\right]}{\mathrm{8}\left[\mathrm{13}−\sqrt{\mathrm{5}}+\mathrm{4}\sqrt{\mathrm{2}\left(\mathrm{5}−\sqrt{\mathrm{5}}\right)}\right]}\approx\mathrm{0}.\mathrm{14081}{a}^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 23/Jan/19

Thanks, beautiful way sir.

$${Thanks},\:{beautiful}\:{way}\:{sir}. \\ $$

Commented by mr W last updated on 23/Jan/19

thanks sir!

$${thanks}\:{sir}! \\ $$

Commented by Otchere Abdullai last updated on 24/Jan/19

my prof

$${my}\:{prof} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com