Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53483 by dwdkswd last updated on 22/Jan/19

Commented by maxmathsup by imad last updated on 22/Jan/19

let A_s =∫_0 ^∞   (x^s /(e^x −1)) dx ⇒A_s =∫_0 ^∞   ((e^(−x) x^s )/(1−e^(−x) )) dx =∫_0 ^∞   e^(−x) x^s (Σ_(n=0) ^∞  e^(−nx) )dx  =Σ_(n=0) ^∞   ∫_0 ^∞  x^s e^(−(n+1)x)  dx =_((n+1)x =t)   Σ_(n=0) ^∞ ∫_0 ^∞  (t^s /((n+1)^s )) e^(−t)  (dt/(n+1))  =Σ_(n=0) ^∞   (1/((n+1)^(s+1) )) ∫_0 ^∞   t^s  e^(−t) dt   but we know Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t) dt (x>0)⇒  ∫_0 ^∞   t^s e^(−t) dt =Γ(s+1) ⇒A_s =ξ(s+1)Γ(s+1) .

$${let}\:{A}_{{s}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{s}} }{{e}^{{x}} −\mathrm{1}}\:{dx}\:\Rightarrow{A}_{{s}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} {x}^{{s}} }{\mathrm{1}−{e}^{−{x}} }\:{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {x}^{{s}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:{x}^{{s}} {e}^{−\left({n}+\mathrm{1}\right){x}} \:{dx}\:=_{\left({n}+\mathrm{1}\right){x}\:={t}} \:\:\sum_{{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{s}} }{\left({n}+\mathrm{1}\right)^{{s}} }\:{e}^{−{t}} \:\frac{{dt}}{{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{s}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:\:{t}^{{s}} \:{e}^{−{t}} {dt}\:\:\:{but}\:{we}\:{know}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\left({x}>\mathrm{0}\right)\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{t}^{{s}} {e}^{−{t}} {dt}\:=\Gamma\left({s}+\mathrm{1}\right)\:\Rightarrow{A}_{{s}} =\xi\left({s}+\mathrm{1}\right)\Gamma\left({s}+\mathrm{1}\right)\:. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

Commented by Tawa1 last updated on 22/Jan/19

Sir, is this advanced algebra ??

$$\mathrm{Sir},\:\mathrm{is}\:\mathrm{this}\:\mathrm{advanced}\:\mathrm{algebra}\:?? \\ $$

Commented by Tawa1 last updated on 22/Jan/19

I mean the textbook you snaped

$$\mathrm{I}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{textbook}\:\mathrm{you}\:\mathrm{snaped} \\ $$

Commented by Tawa1 last updated on 22/Jan/19

What is the name sir

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{name}\:\mathrm{sir} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

visit archive.org and free download it..the book

$${visit}\:{archive}.{org}\:{and}\:{free}\:{download}\:{it}..{the}\:{book} \\ $$

Commented by Tawa1 last updated on 22/Jan/19

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com