Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 53386 by gunawan last updated on 21/Jan/19

∫_( 0) ^1    (dx/(e^x + e^(−x) )) = tan^(−1) e− (π/4)

$$\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\frac{{dx}}{{e}^{{x}} +\:{e}^{−{x}} }\:=\:\mathrm{tan}^{−\mathrm{1}} {e}−\:\frac{\pi}{\mathrm{4}} \\ $$

Commented by Tinkutara last updated on 21/Jan/19

=∫((e^x dx)/(e^(2x) +1))  Put e^x =t and integrate

$$=\int\frac{{e}^{{x}} {dx}}{{e}^{\mathrm{2}{x}} +\mathrm{1}} \\ $$$${Put}\:{e}^{{x}} ={t}\:{and}\:{integrate} \\ $$

Commented by ajfour last updated on 21/Jan/19

how was your Mains exam ?

$${how}\:{was}\:{your}\:{Mains}\:{exam}\:? \\ $$

Commented by gunawan last updated on 21/Jan/19

Nice and clearly Sir

$$\mathrm{Nice}\:\mathrm{and}\:\mathrm{clearly}\:\mathrm{Sir} \\ $$

Commented by maxmathsup by imad last updated on 21/Jan/19

let I =∫_0 ^1  (dx/(e^x +e^(−x) )) ⇒I=_(e^x =t)      ∫_1 ^e    (1/(t +t^(−1) )) (dt/t) =∫_1 ^e   (dt/(t^2  +1))  =[arctan(t)]_1 ^e =arctan(e)−arctan(1)=arctan(e)−(π/4) .

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{{e}^{{x}} +{e}^{−{x}} }\:\Rightarrow{I}=_{{e}^{{x}} ={t}} \:\:\:\:\:\int_{\mathrm{1}} ^{{e}} \:\:\:\frac{\mathrm{1}}{{t}\:+{t}^{−\mathrm{1}} }\:\frac{{dt}}{{t}}\:=\int_{\mathrm{1}} ^{{e}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$=\left[{arctan}\left({t}\right)\right]_{\mathrm{1}} ^{{e}} ={arctan}\left({e}\right)−{arctan}\left(\mathrm{1}\right)={arctan}\left({e}\right)−\frac{\pi}{\mathrm{4}}\:. \\ $$

Commented by Tinkutara last updated on 24/Jan/19

@ajfour Sir My Mains went well above my nervous expectations… I topped in my district Thanks for your continuous support sir And thanks to this wonderful platform… ��

Commented by ajfour last updated on 24/Jan/19

Its all a matter of your curiosity   and willingness to learn. I too,  had enjoyed solving your doubts!

$${Its}\:{all}\:{a}\:{matter}\:{of}\:{your}\:{curiosity}\: \\ $$$${and}\:{willingness}\:{to}\:{learn}.\:{I}\:{too}, \\ $$$${had}\:{enjoyed}\:{solving}\:{your}\:{doubts}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com