Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53270 by Abdo msup. last updated on 19/Jan/19

1)calculate ∫_0 ^∞  e^(−at) dt with a>0  2)by using fubinni theorem find the value of  ∫_0 ^∞   ((e^(−t)  −e^(−xt) )/t)dt   with x>0 .

$$\left.\mathrm{1}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{at}} {dt}\:{with}\:{a}>\mathrm{0} \\ $$ $$\left.\mathrm{2}\right){by}\:{using}\:{fubinni}\:{theorem}\:{find}\:{the}\:{value}\:{of} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} \:−{e}^{−{xt}} }{{t}}{dt}\:\:\:{with}\:{x}>\mathrm{0}\:. \\ $$

Commented bymaxmathsup by imad last updated on 20/Jan/19

1) ∫_0 ^∞  e^(−at) dt =[−(1/a) e^(−at) ]_0 ^(+∞)  =(1/a)  2) ⇒∫_1 ^x  (da/a) =ln(x)      we take x>0 but  ∫_1 ^x  (da/a) =∫_1 ^x (∫_0 ^∞  e^(−at) dt)da =∫_0 ^∞  (∫_1 ^x  e^(−at) da)dt   ( fubini theorem)  =∫_0 ^∞  ( [−(1/t)e^(−at) ]_(a=1) ^(a=x) )dt =∫_0 ^∞  ((e^(−t) −e^(−xt) )/t) dt ⇒  ∫_0 ^∞   ((e^(−t)  −e^(−xt) )/t) dt =ln(x)   with x>0

$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{at}} {dt}\:=\left[−\frac{\mathrm{1}}{{a}}\:{e}^{−{at}} \right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{{a}} \\ $$ $$\left.\mathrm{2}\right)\:\Rightarrow\int_{\mathrm{1}} ^{{x}} \:\frac{{da}}{{a}}\:={ln}\left({x}\right)\:\:\:\:\:\:{we}\:{take}\:{x}>\mathrm{0}\:{but} \\ $$ $$\int_{\mathrm{1}} ^{{x}} \:\frac{{da}}{{a}}\:=\int_{\mathrm{1}} ^{{x}} \left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{at}} {dt}\right){da}\:=\int_{\mathrm{0}} ^{\infty} \:\left(\int_{\mathrm{1}} ^{{x}} \:{e}^{−{at}} {da}\right){dt}\:\:\:\left(\:{fubini}\:{theorem}\right) \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\left(\:\left[−\frac{\mathrm{1}}{{t}}{e}^{−{at}} \right]_{{a}=\mathrm{1}} ^{{a}={x}} \right){dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{t}} −{e}^{−{xt}} }{{t}}\:{dt}\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} \:−{e}^{−{xt}} }{{t}}\:{dt}\:={ln}\left({x}\right)\:\:\:{with}\:{x}>\mathrm{0} \\ $$

Answered by kaivan.ahmadi last updated on 19/Jan/19

1) u=−at⇒du=−adt  ((−1)/a)∫e^u du=((−1)/a)e^u =((−1)/a)e^(−at) ∣_0 ^∞ =((−1)/a)(e^(−∞) −e^0 )=  ((−1)/a)(0−1)=(1/a)

$$\left.\mathrm{1}\right)\:\mathrm{u}=−\mathrm{at}\Rightarrow\mathrm{du}=−\mathrm{adt} \\ $$ $$\frac{−\mathrm{1}}{\mathrm{a}}\int\mathrm{e}^{\mathrm{u}} \mathrm{du}=\frac{−\mathrm{1}}{\mathrm{a}}\mathrm{e}^{\mathrm{u}} =\frac{−\mathrm{1}}{\mathrm{a}}\mathrm{e}^{−\mathrm{at}} \mid_{\mathrm{0}} ^{\infty} =\frac{−\mathrm{1}}{\mathrm{a}}\left(\mathrm{e}^{−\infty} −\mathrm{e}^{\mathrm{0}} \right)= \\ $$ $$\frac{−\mathrm{1}}{\mathrm{a}}\left(\mathrm{0}−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{a}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com