Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53259 by Tawa1 last updated on 19/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jan/19

I=∫_0 ^π ((xdx)/(a^2 cos^2 x+b^2 sin^2 x))dx  I=∫_0 ^π (((π−x)dx)/(a^2 cos^2 (π−x)+b^2 sin^2 (π−x)))  2I=∫_0 ^π ((x+π−x)/(a^2 cos^2 x+b^2 sin^2 x))dx  ((2I)/π)=∫_0 ^π (dx/(cos^2 x(a^2 +b^2 tan^2 x)))  =∫_0 ^π ((sec^2 xdx)/(b^2 ((a^2 /b^2 )+tan^2 x)))  ((2I)/π)=(1/b^2 )∫_0 ^π ((sec^2 x)/((a^2 /b^2 )+tan^2 x))dx  wait...  f(x)=((sec^2 x)/((a^2 /b^2 )+tan^2 x))  f(π−x)=((sec^2 (π−x))/((a^2 /b^2 )+tan^2 (π−x)))=f(x)  so  ((2I)/π)=(1/b^2 )×2∫_0 ^(π/2) ((sec^2 x)/((a^2 /b^2 )+tan^2 x))  ((Ib^2 )/π)=∫_0 ^(π/2) ((sec^2 x)/((a^2 /b^2 )+tan^2 x))dx  let   k=tanx  [dk=sec^2 xdx  ((Ib^2 )/π)=∫_( 0) ^∞ (dk/((a^2 /b^2 )+k^2 ))  ((Ib^2 )/π)=(1/(a/b))×∣tan^(−1) ((k/(a/b)))∣_0 ^∞   I=(π/(ab))[tan^(−1) (∞)−tan^(−1) (0)]  I=(π/(ab))×(π/2)=(π^2 /(2ab))

$${I}=\int_{\mathrm{0}} ^{\pi} \frac{{xdx}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}}{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\pi} \frac{\left(\pi−{x}\right){dx}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \left(\pi−{x}\right)+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \left(\pi−{x}\right)} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi} \frac{{x}+\pi−{x}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}}{dx} \\ $$$$\frac{\mathrm{2}{I}}{\pi}=\overset{\pi} {\int}_{\mathrm{0}} \frac{{dx}}{{cos}^{\mathrm{2}} {x}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} {tan}^{\mathrm{2}} {x}\right)} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \frac{{sec}^{\mathrm{2}} {xdx}}{{b}^{\mathrm{2}} \left(\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+{tan}^{\mathrm{2}} {x}\right)} \\ $$$$\frac{\mathrm{2}{I}}{\pi}=\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\pi} \frac{{sec}^{\mathrm{2}} {x}}{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+{tan}^{\mathrm{2}} {x}}{dx} \\ $$$${wait}... \\ $$$${f}\left({x}\right)=\frac{{sec}^{\mathrm{2}} {x}}{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+{tan}^{\mathrm{2}} {x}} \\ $$$${f}\left(\pi−{x}\right)=\frac{{sec}^{\mathrm{2}} \left(\pi−{x}\right)}{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+{tan}^{\mathrm{2}} \left(\pi−{x}\right)}={f}\left({x}\right) \\ $$$${so} \\ $$$$\frac{\mathrm{2}{I}}{\pi}=\frac{\mathrm{1}}{{b}^{\mathrm{2}} }×\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} {x}}{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+{tan}^{\mathrm{2}} {x}} \\ $$$$\frac{{Ib}^{\mathrm{2}} }{\pi}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} {x}}{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+{tan}^{\mathrm{2}} {x}}{dx} \\ $$$${let}\:\:\:{k}={tanx}\:\:\left[{dk}={sec}^{\mathrm{2}} {xdx}\right. \\ $$$$\frac{{Ib}^{\mathrm{2}} }{\pi}=\int_{\:\mathrm{0}} ^{\infty} \frac{{dk}}{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+{k}^{\mathrm{2}} } \\ $$$$\frac{{Ib}^{\mathrm{2}} }{\pi}=\frac{\mathrm{1}}{\frac{{a}}{{b}}}×\mid{tan}^{−\mathrm{1}} \left(\frac{{k}}{\frac{{a}}{{b}}}\right)\mid_{\mathrm{0}} ^{\infty} \\ $$$${I}=\frac{\pi}{{ab}}\left[{tan}^{−\mathrm{1}} \left(\infty\right)−{tan}^{−\mathrm{1}} \left(\mathrm{0}\right)\right] \\ $$$${I}=\frac{\pi}{{ab}}×\frac{\pi}{\mathrm{2}}=\frac{\pi^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$

Commented by Tawa1 last updated on 19/Jan/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com