Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53118 by gunawan last updated on 18/Jan/19

If a<∫_0 ^(2π) (1/(10+3 cos x)) dx<b, then the  ordered pair (a, b) is

$$\mathrm{If}\:{a}<\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{1}}{\mathrm{10}+\mathrm{3}\:\mathrm{cos}\:{x}}\:{dx}<{b},\:\mathrm{then}\:\mathrm{the} \\ $$ $$\mathrm{ordered}\:\mathrm{pair}\:\left({a},\:{b}\right)\:\mathrm{is} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jan/19

i am using simple logic..  then i[shall solve in details  we know  cosx max value=+1  cosx minimum value=−1  so   10+3(1)>10+3cosx>10+3(−1)  13>10+3cosx>7  (1/(13))<(1/(10+3cosx))<(1/7)  ∫_0 ^(2π) (dx/(13))<∫_0 ^(2π) (dx/(10+3cosx))<∫_0 ^(2π) (dx/7)  ((2π)/(13))<∫_0 ^(2π) (dx/(10+3cosx))<((2π)/7)  so a=((2π)/(13))   b=((2π)/7)    (((2π)/(13)),((2π)/7))

$${i}\:{am}\:{using}\:{simple}\:{logic}.. \\ $$ $${then}\:{i}\left[{shall}\:{solve}\:{in}\:{details}\right. \\ $$ $${we}\:{know}\:\:{cosx}\:{max}\:{value}=+\mathrm{1} \\ $$ $${cosx}\:{minimum}\:{value}=−\mathrm{1} \\ $$ $${so} \\ $$ $$\:\mathrm{10}+\mathrm{3}\left(\mathrm{1}\right)>\mathrm{10}+\mathrm{3}{cosx}>\mathrm{10}+\mathrm{3}\left(−\mathrm{1}\right) \\ $$ $$\mathrm{13}>\mathrm{10}+\mathrm{3}{cosx}>\mathrm{7} \\ $$ $$\frac{\mathrm{1}}{\mathrm{13}}<\frac{\mathrm{1}}{\mathrm{10}+\mathrm{3}{cosx}}<\frac{\mathrm{1}}{\mathrm{7}} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{13}}<\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{10}+\mathrm{3}{cosx}}<\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{7}} \\ $$ $$\frac{\mathrm{2}\pi}{\mathrm{13}}<\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{10}+\mathrm{3}{cosx}}<\frac{\mathrm{2}\pi}{\mathrm{7}} \\ $$ $${so}\:{a}=\frac{\mathrm{2}\pi}{\mathrm{13}}\:\:\:{b}=\frac{\mathrm{2}\pi}{\mathrm{7}}\:\:\:\:\left(\frac{\mathrm{2}\pi}{\mathrm{13}},\frac{\mathrm{2}\pi}{\mathrm{7}}\right) \\ $$

Commented bygunawan last updated on 19/Jan/19

wow thank you Sir

$$\mathrm{wow}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jan/19

most welcome...

$${most}\:{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com