Question Number 105289 by Anindita last updated on 27/Jul/20 | ||
$$\sqrt{\mathrm{52}}+\sqrt{\mathrm{3}}−\sqrt{\frac{\mathrm{4}}{\mathrm{6}}}\:=\:? \\ $$ | ||
Answered by SUMIT007 last updated on 27/Jul/20 | ||
$$\Rightarrow\:\mathrm{2}\sqrt{\mathrm{13}}+\sqrt{\mathrm{3}}−\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$\Rightarrow\:\mathrm{2}\sqrt{\mathrm{13}}+\sqrt{\mathrm{3}}−\frac{\sqrt{\mathrm{6}}}{\mathrm{3}} \\ $$$$\Rightarrow\:\frac{\mathrm{6}\sqrt{\mathrm{13}}+\mathrm{3}\sqrt{\mathrm{3}}−\sqrt{\mathrm{6}}}{\mathrm{3}} \\ $$$$\Rightarrow\:\frac{\mathrm{6}×\mathrm{3}.\mathrm{6}+\mathrm{3}×\mathrm{1}.\mathrm{7}−\mathrm{1}.\mathrm{41}×\mathrm{1}.\mathrm{7}}{\mathrm{3}}\: \\ $$$$\:\:\:\:\:\left(\:\sqrt{\mathrm{6}}=\mathrm{3}.\mathrm{6}\:\:\sqrt{\mathrm{3}}=\mathrm{1}.\mathrm{7}\:\:\sqrt{\mathrm{2}}=\mathrm{1}.\mathrm{41}\right) \\ $$$$\Rightarrow\:\mathrm{6}×\mathrm{1}.\mathrm{2}+\mathrm{1}.\mathrm{7}−.\mathrm{47}×\mathrm{1}.\mathrm{7} \\ $$$$\Rightarrow\:\mathrm{7}.\mathrm{2}\:+\:\mathrm{1}.\mathrm{7}\:−\:.\mathrm{8} \\ $$$$\Rightarrow\:\mathrm{8}.\mathrm{1} \\ $$ | ||