Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 51709 by sinx last updated on 29/Dec/18

y′′=2y(y′)    solve the equation

$${y}''=\mathrm{2}{y}\left({y}'\right) \\ $$$$ \\ $$$${solve}\:{the}\:{equation} \\ $$

Answered by mr W last updated on 29/Dec/18

y′′=((d(y′))/dx)=((d(y′))/dy)×(dy/dx)=y′((d(y′))/dy)  y′′=2y(y′)  y′((d(y′))/dy)=2y(y′)  ((d(y′))/dy)=2y  ⇒y′=y^2 +c_1 ^2   ⇒(dy/dx)=y^2 +c_1 ^2   ⇒∫(dy/(y^2 +c_1 ^2 ))=∫dx  ⇒(1/c_1 )tan^(−1) (y/c_1 )=x+c_2   ⇒y=c_1 tan (c_1 x+c_2 )

$${y}''=\frac{{d}\left({y}'\right)}{{dx}}=\frac{{d}\left({y}'\right)}{{dy}}×\frac{{dy}}{{dx}}={y}'\frac{{d}\left({y}'\right)}{{dy}} \\ $$$${y}''=\mathrm{2}{y}\left({y}'\right) \\ $$$${y}'\frac{{d}\left({y}'\right)}{{dy}}=\mathrm{2}{y}\left({y}'\right) \\ $$$$\frac{{d}\left({y}'\right)}{{dy}}=\mathrm{2}{y} \\ $$$$\Rightarrow{y}'={y}^{\mathrm{2}} +{c}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}={y}^{\mathrm{2}} +{c}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow\int\frac{{dy}}{{y}^{\mathrm{2}} +{c}_{\mathrm{1}} ^{\mathrm{2}} }=\int{dx} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{c}_{\mathrm{1}} }\mathrm{tan}^{−\mathrm{1}} \frac{{y}}{{c}_{\mathrm{1}} }={x}+{c}_{\mathrm{2}} \\ $$$$\Rightarrow{y}={c}_{\mathrm{1}} \mathrm{tan}\:\left({c}_{\mathrm{1}} {x}+{c}_{\mathrm{2}} \right) \\ $$

Answered by Abdulhafeez Abu qatada last updated on 30/Dec/18

    y′′ = (d/dx)(y^2 )  ∫y′′ dx = y^2   y′ + V= y^2   y′ + V  = y^2   (dy/dx) = y^2  + V  (dy/(y^2 +V)) = dx    (1/C)tan^(−1) ((y/C)) + C_2  = x

$$ \\ $$$$ \\ $$$${y}''\:=\:\frac{{d}}{{dx}}\left({y}^{\mathrm{2}} \right) \\ $$$$\int{y}''\:{dx}\:=\:{y}^{\mathrm{2}} \\ $$$${y}'\:+\:{V}=\:{y}^{\mathrm{2}} \\ $$$${y}'\:+\:{V}\:\:=\:{y}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}\:=\:{y}^{\mathrm{2}} \:+\:{V} \\ $$$$\frac{{dy}}{{y}^{\mathrm{2}} +{V}}\:=\:{dx} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{C}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{y}}{{C}}\right)\:+\:{C}_{\mathrm{2}} \:=\:{x}\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com