Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 51494 by Tawa1 last updated on 27/Dec/18

Solve:        (t^2  + 1) (dp/dt)  =  p^t

$$\mathrm{Solve}:\:\:\:\:\:\:\:\:\left(\mathrm{t}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\frac{\mathrm{dp}}{\mathrm{dt}}\:\:=\:\:\mathrm{p}^{\mathrm{t}} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 27/Dec/18

(t^2 +1)(d^2 p/dt^2 )+(dp/dt)×2t=(d/dt)(p^t )  y=p^t   lny=tlnp  (1/y)(dy/dt)=(t/p)(dp/dt)+lnp  (dy/dt)=y[(t/p)(dp/dt)+lnp]  unique question...force the sleeping cell of brain  to wake up...searching way to solve...

$$\left({t}^{\mathrm{2}} +\mathrm{1}\right)\frac{{d}^{\mathrm{2}} {p}}{{dt}^{\mathrm{2}} }+\frac{{dp}}{{dt}}×\mathrm{2}{t}=\frac{{d}}{{dt}}\left({p}^{{t}} \right) \\ $$$${y}={p}^{{t}} \\ $$$${lny}={tlnp} \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dt}}=\frac{{t}}{{p}}\frac{{dp}}{{dt}}+{lnp} \\ $$$$\frac{{dy}}{{dt}}={y}\left[\frac{{t}}{{p}}\frac{{dp}}{{dt}}+{lnp}\right] \\ $$$${unique}\:{question}...{force}\:{the}\:{sleeping}\:{cell}\:{of}\:{brain} \\ $$$${to}\:{wake}\:{up}...{searching}\:{way}\:{to}\:{solve}... \\ $$

Commented by Tawa1 last updated on 27/Dec/18

I will wait sir,  thanks for your time. God bless you sir

$$\mathrm{I}\:\mathrm{will}\:\mathrm{wait}\:\mathrm{sir},\:\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com