Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 503 by 123456 last updated on 20/Jan/15

proof or given a counter−example:  if n∈N,n>1, exist a number k∈N  k∈(0,n] such that n+k is prime.

$${proof}\:{or}\:{given}\:{a}\:{counter}−{example}: \\ $$ $${if}\:{n}\in\mathbb{N},{n}>\mathrm{1},\:{exist}\:{a}\:{number}\:{k}\in\mathbb{N} \\ $$ $${k}\in\left(\mathrm{0},{n}\right]\:{such}\:{that}\:{n}+{k}\:{is}\:{prime}. \\ $$

Commented byprakash jain last updated on 20/Jan/15

Bertrand′s theorem states that   if p_i  is i^(th)  prime than p_(i+1) <2∙p_i   The statement given in question  directly follows from Bertrand theorem  for k=p_(i+1) −p_i , where p_i =n.

$$\mathrm{Bertrand}'\mathrm{s}\:\mathrm{theorem}\:\mathrm{states}\:\mathrm{that}\: \\ $$ $$\mathrm{if}\:{p}_{{i}} \:\mathrm{is}\:{i}^{{th}} \:\mathrm{prime}\:\mathrm{than}\:{p}_{{i}+\mathrm{1}} <\mathrm{2}\centerdot{p}_{{i}} \\ $$ $$\mathrm{The}\:\mathrm{statement}\:\mathrm{given}\:\mathrm{in}\:\mathrm{question} \\ $$ $$\mathrm{directly}\:\mathrm{follows}\:\mathrm{from}\:\mathrm{Bertrand}\:\mathrm{theorem} \\ $$ $$\mathrm{for}\:{k}={p}_{{i}+\mathrm{1}} −{p}_{{i}} ,\:\mathrm{where}\:{p}_{{i}} ={n}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com