Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49645 by maxmathsup by imad last updated on 08/Dec/18

calculate ∫∫_C  ∣x+y∣dxdy  with C=[−1,1]×[−1,1]

$${calculate}\:\int\int_{{C}} \:\mid{x}+{y}\mid{dxdy}\:\:{with}\:{C}=\left[−\mathrm{1},\mathrm{1}\right]×\left[−\mathrm{1},\mathrm{1}\right] \\ $$

Answered by ajfour last updated on 08/Dec/18

I = 2∫_(−1) ^(  1) [∫_(−x) ^(  1) (x+y)dy]dx     = 2∫_(−1) ^(  1) (xy+(y^2 /2))∣_(−x) ^1 dx     = 2∫_(−1) ^(  1) (x+(1/2)+x^2 −(x^2 /2))dx     = 2∫_0 ^(  1) (x^2 +1)dx = (8/3) .

$${I}\:=\:\mathrm{2}\int_{−\mathrm{1}} ^{\:\:\mathrm{1}} \left[\int_{−{x}} ^{\:\:\mathrm{1}} \left({x}+{y}\right){dy}\right]{dx} \\ $$$$\:\:\:=\:\mathrm{2}\int_{−\mathrm{1}} ^{\:\:\mathrm{1}} \left({xy}+\frac{{y}^{\mathrm{2}} }{\mathrm{2}}\right)\mid_{−{x}} ^{\mathrm{1}} {dx} \\ $$$$\:\:\:=\:\mathrm{2}\int_{−\mathrm{1}} ^{\:\:\mathrm{1}} \left({x}+\frac{\mathrm{1}}{\mathrm{2}}+{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right){dx} \\ $$$$\:\:\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \left({x}^{\mathrm{2}} +\mathrm{1}\right){dx}\:=\:\frac{\mathrm{8}}{\mathrm{3}}\:. \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

correct answer thanks sir.

$${correct}\:{answer}\:{thanks}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com