Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 49294 by peter frank last updated on 05/Dec/18

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

common root is k  k^2 +ak+b=0  ck^2 +2ak−3b=0  (k^2 /((a×−3b)−(2a×b)))=(k/(bc−(−3b)))=(1/(2a−ac))  (k^2 /(−5ab))=(k/(bc+3b))=(1/(2a−ac))  k^2 =((−5ab)/(2a−ac))=((5b)/(c−2))  k=((b(c+3))/(−a(c−2)))  so  ((5b)/(c−2))=(({b(c+3)}^2 )/({−a(c−2)}^2 ))  ((5b)/(c−2))=((b^2 (c+3)^2 )/(a^2 (c−2)^2 ))  b=((5a^2 (c−2))/((c+3)^2 ))

$${common}\:{root}\:{is}\:{k} \\ $$$${k}^{\mathrm{2}} +{ak}+{b}=\mathrm{0} \\ $$$${ck}^{\mathrm{2}} +\mathrm{2}{ak}−\mathrm{3}{b}=\mathrm{0} \\ $$$$\frac{{k}^{\mathrm{2}} }{\left({a}×−\mathrm{3}{b}\right)−\left(\mathrm{2}{a}×{b}\right)}=\frac{{k}}{{bc}−\left(−\mathrm{3}{b}\right)}=\frac{\mathrm{1}}{\mathrm{2}{a}−{ac}} \\ $$$$\frac{{k}^{\mathrm{2}} }{−\mathrm{5}{ab}}=\frac{{k}}{{bc}+\mathrm{3}{b}}=\frac{\mathrm{1}}{\mathrm{2}{a}−{ac}} \\ $$$${k}^{\mathrm{2}} =\frac{−\mathrm{5}{ab}}{\mathrm{2}{a}−{ac}}=\frac{\mathrm{5}{b}}{{c}−\mathrm{2}} \\ $$$${k}=\frac{{b}\left({c}+\mathrm{3}\right)}{−{a}\left({c}−\mathrm{2}\right)} \\ $$$${so} \\ $$$$\frac{\mathrm{5}{b}}{{c}−\mathrm{2}}=\frac{\left\{{b}\left({c}+\mathrm{3}\right)\right\}^{\mathrm{2}} }{\left\{−{a}\left({c}−\mathrm{2}\right)\right\}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{5}{b}}{{c}−\mathrm{2}}=\frac{{b}^{\mathrm{2}} \left({c}+\mathrm{3}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} \left({c}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$${b}=\frac{\mathrm{5}{a}^{\mathrm{2}} \left({c}−\mathrm{2}\right)}{\left({c}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com