Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49279 by Tawa1 last updated on 05/Dec/18

Commented by MJS last updated on 05/Dec/18

x−4=u  2x−5=v  u^(2017) +u^(2015) +u=−(v^(2017) +v^(2015) +v)  ⇒ v=−u ⇔ u+v=0  3x−9=0  x=3  we can put  u^n +u^(n−2) +u+v^n +v^(n−2) +v=0  and test for n=2k+1; k∈N^★  if  u^(2k+1) +u^(2k−1) +u+v^(2k+1) +v^(2k−1) +v=0  has got real solutions  I tested for k={1, 2, 3, 4, 5} and found no  real solutions except v=−u  but I can′t prove it

$${x}−\mathrm{4}={u} \\ $$$$\mathrm{2}{x}−\mathrm{5}={v} \\ $$$${u}^{\mathrm{2017}} +{u}^{\mathrm{2015}} +{u}=−\left({v}^{\mathrm{2017}} +{v}^{\mathrm{2015}} +{v}\right) \\ $$$$\Rightarrow\:{v}=−{u}\:\Leftrightarrow\:{u}+{v}=\mathrm{0} \\ $$$$\mathrm{3}{x}−\mathrm{9}=\mathrm{0} \\ $$$${x}=\mathrm{3} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{put} \\ $$$${u}^{{n}} +{u}^{{n}−\mathrm{2}} +{u}+{v}^{{n}} +{v}^{{n}−\mathrm{2}} +{v}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{test}\:\mathrm{for}\:{n}=\mathrm{2}{k}+\mathrm{1};\:{k}\in\mathbb{N}^{\bigstar} \:\mathrm{if} \\ $$$${u}^{\mathrm{2}{k}+\mathrm{1}} +{u}^{\mathrm{2}{k}−\mathrm{1}} +{u}+{v}^{\mathrm{2}{k}+\mathrm{1}} +{v}^{\mathrm{2}{k}−\mathrm{1}} +{v}=\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{got}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\mathrm{I}\:\mathrm{tested}\:\mathrm{for}\:{k}=\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5}\right\}\:\mathrm{and}\:\mathrm{found}\:\mathrm{no} \\ $$$$\mathrm{real}\:\mathrm{solutions}\:\mathrm{except}\:{v}=−{u} \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{prove}\:\mathrm{it} \\ $$

Answered by afachri last updated on 05/Dec/18

     i think the first solution is :        (2x − 5) + (x−4) + (2x − 5) + (x − 4) + 3x − 9 = 0                        9x − 27 = 0     ⇒    x = 3  check if x = 3 :     (2x − 5)^(2017) +  (x − 4)^(2017) +  (2x − 5)^(2015) +  (x − 4)^(2015)  +  (3x − 9) =  0           1^(2017)          +  (−1)^(2017)      +       1^(2015)      +    (−1)^(2015)  + 0 =   0           1 − 1 + 1 − 1 + 0 = 0  i have no ideas about any other solution.   i am just a rookie one. please correct me gently if   i′m wrong and teach me please.

$$ \\ $$$$\:\:\:\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{first}\:\mathrm{solution}\:\mathrm{is}\::\: \\ $$$$\:\:\:\:\:\left(\mathrm{2}{x}\:−\:\mathrm{5}\right)\:+\:\left({x}−\mathrm{4}\right)\:+\:\left(\mathrm{2}{x}\:−\:\mathrm{5}\right)\:+\:\left({x}\:−\:\mathrm{4}\right)\:+\:\mathrm{3}{x}\:−\:\mathrm{9}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{9}{x}\:−\:\mathrm{27}\:=\:\mathrm{0}\:\:\:\:\:\Rightarrow\:\:\:\:{x}\:=\:\mathrm{3} \\ $$$$\boldsymbol{\mathrm{check}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{{x}}\:=\:\mathrm{3}\::\: \\ $$$$\:\:\left(\mathrm{2}{x}\:−\:\mathrm{5}\right)^{\mathrm{2017}} +\:\:\left({x}\:−\:\mathrm{4}\right)^{\mathrm{2017}} +\:\:\left(\mathrm{2}{x}\:−\:\mathrm{5}\right)^{\mathrm{2015}} +\:\:\left({x}\:−\:\mathrm{4}\right)^{\mathrm{2015}} \:+\:\:\left(\mathrm{3}{x}\:−\:\mathrm{9}\right)\:=\:\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{1}^{\mathrm{2017}} \:\:\:\:\:\:\:\:\:+\:\:\left(−\mathrm{1}\right)^{\mathrm{2017}} \:\:\:\:\:+\:\:\:\:\:\:\:\mathrm{1}^{\mathrm{2015}} \:\:\:\:\:+\:\:\:\:\left(−\mathrm{1}\right)^{\mathrm{2015}} \:+\:\mathrm{0}\:=\:\:\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{1}\:−\:\mathrm{1}\:+\:\mathrm{1}\:−\:\mathrm{1}\:+\:\mathrm{0}\:=\:\mathrm{0} \\ $$$$\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{have}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{ideas}}\:\boldsymbol{\mathrm{about}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{other}}\:\boldsymbol{\mathrm{solution}}.\: \\ $$$$\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{am}}\:\boldsymbol{\mathrm{just}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{rookie}}\:\boldsymbol{\mathrm{one}}.\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{correct}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{gently}}\:\boldsymbol{\mathrm{if}}\: \\ $$$$\boldsymbol{\mathrm{i}}'\boldsymbol{\mathrm{m}}\:\boldsymbol{\mathrm{wrong}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{teach}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{please}}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

f(x)=(2x−5)^(2017) +(2x−5)^(2015) +2x−5+(x−4)^(2017) +(x−4)^(2015) +(x−4)  critical value (5/2) and 4  f(x)<0  at x=2.5  f(x)>0 at x=4  so from x=2.5  to x=4 sign of f(x) changes  so one root of x must lie between 2.5 to 4  now put x=3  f(x)=0   so x=3

$${f}\left({x}\right)=\left(\mathrm{2}{x}−\mathrm{5}\right)^{\mathrm{2017}} +\left(\mathrm{2}{x}−\mathrm{5}\right)^{\mathrm{2015}} +\mathrm{2}{x}−\mathrm{5}+\left({x}−\mathrm{4}\right)^{\mathrm{2017}} +\left({x}−\mathrm{4}\right)^{\mathrm{2015}} +\left({x}−\mathrm{4}\right) \\ $$$${critical}\:{value}\:\frac{\mathrm{5}}{\mathrm{2}}\:{and}\:\mathrm{4} \\ $$$${f}\left({x}\right)<\mathrm{0}\:\:{at}\:{x}=\mathrm{2}.\mathrm{5} \\ $$$${f}\left({x}\right)>\mathrm{0}\:{at}\:{x}=\mathrm{4} \\ $$$${so}\:{from}\:{x}=\mathrm{2}.\mathrm{5}\:\:{to}\:{x}=\mathrm{4}\:{sign}\:{of}\:{f}\left({x}\right)\:{changes} \\ $$$${so}\:{one}\:{root}\:{of}\:{x}\:{must}\:{lie}\:{between}\:\mathrm{2}.\mathrm{5}\:{to}\:\mathrm{4} \\ $$$${now}\:{put}\:{x}=\mathrm{3} \\ $$$${f}\left({x}\right)=\mathrm{0}\:\:\:{so}\:{x}=\mathrm{3}\: \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com