Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49186 by afachri last updated on 04/Dec/18

please help...    There is :                21x^2  − 21p x + 49p − 7 = 0  whose roots u and v. If u and v are not ∈Z ,   and u,v ≥ 1.  find the value of u + v !

$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{help}}... \\ $$$$ \\ $$$$\mathrm{There}\:\mathrm{is}\::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{21}\boldsymbol{{x}}^{\mathrm{2}} \:−\:\mathrm{21}\boldsymbol{{p}}\:\boldsymbol{{x}}\:+\:\mathrm{49}\boldsymbol{{p}}\:−\:\mathrm{7}\:=\:\mathrm{0} \\ $$$$\mathrm{whose}\:\mathrm{roots}\:\boldsymbol{{u}}\:\mathrm{and}\:\boldsymbol{{v}}.\:\mathrm{If}\:\boldsymbol{{u}}\:\mathrm{and}\:\boldsymbol{{v}}\:\mathrm{are}\:\mathrm{not}\:\in\mathbb{Z}\:,\: \\ $$$$\mathrm{and}\:\boldsymbol{{u}},\boldsymbol{{v}}\:\geqslant\:\mathrm{1}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{{u}}\:+\:\boldsymbol{{v}}\:! \\ $$$$ \\ $$

Commented by MJS last updated on 04/Dec/18

strange question... there′s not a single solution

$$\mathrm{strange}\:\mathrm{question}...\:\mathrm{there}'\mathrm{s}\:\mathrm{not}\:\mathrm{a}\:\mathrm{single}\:\mathrm{solution} \\ $$

Commented by afachri last updated on 04/Dec/18

i thought it is. i found this question in test of University.

$$\mathrm{i}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{is}.\:\mathrm{i}\:\mathrm{found}\:\mathrm{this}\:\mathrm{question}\:\mathrm{in}\:\mathrm{test}\:\mathrm{of}\:\mathrm{University}. \\ $$

Commented by mr W last updated on 04/Dec/18

x=((21p±(√D))/(2×21))  condition 1:  D=(21p)^2 −4×21×(49p−7)≥0  3p^2 −4(7p−1)≥0  3p^2 −28p+4≥0  p≤((14−2(√(46)))/3)=0.145  p≥((14+2(√(46)))/3)=9.188  condition 2:  x_1 =((21p−(√D))/(2×21))≥1  21p−(√D)≥42  (√D)≤21p−42  D=(21p)^2 −4×21×(49p−7)≤(21p−42)^2   1≤p    u+v=((21p)/(21))=p≥2  uv=((49p−7)/(21))=((7p−1)/3)≥1⇒p≥(4/7)  ⇒u+v=p≥((14+2(√(46)))/3)=9.188

$${x}=\frac{\mathrm{21}{p}\pm\sqrt{{D}}}{\mathrm{2}×\mathrm{21}} \\ $$$${condition}\:\mathrm{1}: \\ $$$${D}=\left(\mathrm{21}{p}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{21}×\left(\mathrm{49}{p}−\mathrm{7}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{3}{p}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{7}{p}−\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{3}{p}^{\mathrm{2}} −\mathrm{28}{p}+\mathrm{4}\geqslant\mathrm{0} \\ $$$${p}\leqslant\frac{\mathrm{14}−\mathrm{2}\sqrt{\mathrm{46}}}{\mathrm{3}}=\mathrm{0}.\mathrm{145} \\ $$$${p}\geqslant\frac{\mathrm{14}+\mathrm{2}\sqrt{\mathrm{46}}}{\mathrm{3}}=\mathrm{9}.\mathrm{188} \\ $$$${condition}\:\mathrm{2}: \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{21}{p}−\sqrt{{D}}}{\mathrm{2}×\mathrm{21}}\geqslant\mathrm{1} \\ $$$$\mathrm{21}{p}−\sqrt{{D}}\geqslant\mathrm{42} \\ $$$$\sqrt{{D}}\leqslant\mathrm{21}{p}−\mathrm{42} \\ $$$${D}=\left(\mathrm{21}{p}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{21}×\left(\mathrm{49}{p}−\mathrm{7}\right)\leqslant\left(\mathrm{21}{p}−\mathrm{42}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}\leqslant{p} \\ $$$$ \\ $$$${u}+{v}=\frac{\mathrm{21}{p}}{\mathrm{21}}={p}\geqslant\mathrm{2} \\ $$$${uv}=\frac{\mathrm{49}{p}−\mathrm{7}}{\mathrm{21}}=\frac{\mathrm{7}{p}−\mathrm{1}}{\mathrm{3}}\geqslant\mathrm{1}\Rightarrow{p}\geqslant\frac{\mathrm{4}}{\mathrm{7}} \\ $$$$\Rightarrow{u}+{v}={p}\geqslant\frac{\mathrm{14}+\mathrm{2}\sqrt{\mathrm{46}}}{\mathrm{3}}=\mathrm{9}.\mathrm{188} \\ $$

Commented by afachri last updated on 04/Dec/18

nothing matches to the avaible answers. the options are  a. ((59)/3)     b. ((60)/3)    c. ((61)/3)    d. ((62)/3)    e.((63)/3)

$$\mathrm{nothing}\:\mathrm{matches}\:\mathrm{to}\:\mathrm{the}\:\mathrm{avaible}\:\mathrm{answers}.\:\mathrm{the}\:\mathrm{options}\:\mathrm{are} \\ $$$$\mathrm{a}.\:\frac{\mathrm{59}}{\mathrm{3}}\:\:\:\:\:\mathrm{b}.\:\frac{\mathrm{60}}{\mathrm{3}}\:\:\:\:\mathrm{c}.\:\frac{\mathrm{61}}{\mathrm{3}}\:\:\:\:\mathrm{d}.\:\frac{\mathrm{62}}{\mathrm{3}}\:\:\:\:\mathrm{e}.\frac{\mathrm{63}}{\mathrm{3}} \\ $$

Answered by MJS last updated on 04/Dec/18

x^2 −px+((7p−1)/3)=0  x=(p/2)±(√((3p^2 −28p+4)/(12))) ⇒ p≤((14−2(√(46)))/3)∨p≥((14+2(√(46)))/3)  u+v=p with p≥((14+2(√(46)))/3)∧p≠13

$${x}^{\mathrm{2}} −{px}+\frac{\mathrm{7}{p}−\mathrm{1}}{\mathrm{3}}=\mathrm{0} \\ $$$${x}=\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{3}{p}^{\mathrm{2}} −\mathrm{28}{p}+\mathrm{4}}{\mathrm{12}}}\:\Rightarrow\:{p}\leqslant\frac{\mathrm{14}−\mathrm{2}\sqrt{\mathrm{46}}}{\mathrm{3}}\vee{p}\geqslant\frac{\mathrm{14}+\mathrm{2}\sqrt{\mathrm{46}}}{\mathrm{3}} \\ $$$${u}+{v}={p}\:\mathrm{with}\:{p}\geqslant\frac{\mathrm{14}+\mathrm{2}\sqrt{\mathrm{46}}}{\mathrm{3}}\wedge{p}\neq\mathrm{13} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com