Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 48921 by peter frank last updated on 30/Nov/18

Commented by maxmathsup by imad last updated on 30/Nov/18

we have cos(3θ) ∼1−((9θ^2 )/2)   (θ→0) and cosθ ∼1−(θ^2 /2)  cos(4θ)∼ 1−8θ^2    and cos(2θ)∼1−2θ^2  ⇒cos(3θ)−cos(θ)∼−4θ^2   cos(4θ)−cos(2θ)∼−6θ^2  ⇒((cos(3θ)−cosθ)/(cos(4θ)−cos(2θ))) ∼((−4θ^2 )/(−6θ^2 )) =(2/3) ⇒  lim_(θ→0)  ((cos(3θ)−cos(θ))/(cos(4θ)−cos(2θ))) =(2/3) .

$${we}\:{have}\:{cos}\left(\mathrm{3}\theta\right)\:\sim\mathrm{1}−\frac{\mathrm{9}\theta^{\mathrm{2}} }{\mathrm{2}}\:\:\:\left(\theta\rightarrow\mathrm{0}\right)\:{and}\:{cos}\theta\:\sim\mathrm{1}−\frac{\theta^{\mathrm{2}} }{\mathrm{2}} \\ $$$${cos}\left(\mathrm{4}\theta\right)\sim\:\mathrm{1}−\mathrm{8}\theta^{\mathrm{2}} \:\:\:{and}\:{cos}\left(\mathrm{2}\theta\right)\sim\mathrm{1}−\mathrm{2}\theta^{\mathrm{2}} \:\Rightarrow{cos}\left(\mathrm{3}\theta\right)−{cos}\left(\theta\right)\sim−\mathrm{4}\theta^{\mathrm{2}} \\ $$$${cos}\left(\mathrm{4}\theta\right)−{cos}\left(\mathrm{2}\theta\right)\sim−\mathrm{6}\theta^{\mathrm{2}} \:\Rightarrow\frac{{cos}\left(\mathrm{3}\theta\right)−{cos}\theta}{{cos}\left(\mathrm{4}\theta\right)−{cos}\left(\mathrm{2}\theta\right)}\:\sim\frac{−\mathrm{4}\theta^{\mathrm{2}} }{−\mathrm{6}\theta^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow \\ $$$${lim}_{\theta\rightarrow\mathrm{0}} \:\frac{{cos}\left(\mathrm{3}\theta\right)−{cos}\left(\theta\right)}{{cos}\left(\mathrm{4}\theta\right)−{cos}\left(\mathrm{2}\theta\right)}\:=\frac{\mathrm{2}}{\mathrm{3}}\:. \\ $$

Answered by afachri last updated on 30/Nov/18

⇔  lim_(θ→0)   (((−2 sin ((3θ+θ)/2)sin((3θ−θ)/2)))/((−2sin((4θ+2θ)/2)sin((4θ−2θ)/2))))      ⇔  lim_(θ→0)   (((sin2θsinθ)/(sin3θsinθ)))    ⇔  lim_(θ→0)  ((sin2θ)/(sin3θ)) . ((2θ)/(2θ)) . ((3θ)/(3θ))  = lim_(θ→0)  ((sin2θ)/(2θ)) . ((3θ)/(sin3θ)) . ((2θ)/(3θ))                                               = (2/3)    notice : lim_(x→0)  ((ax)/(sin(ax))) = lim_(x→0)  ((sin(ax))/(ax)) = 1

$$\Leftrightarrow\:\:\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\left(−\mathrm{2}\:{sin}\:\frac{\mathrm{3}\theta+\theta}{\mathrm{2}}{sin}\frac{\mathrm{3}\theta−\theta}{\mathrm{2}}\right)}{\left(−\mathrm{2}{sin}\frac{\mathrm{4}\theta+\mathrm{2}\theta}{\mathrm{2}}{sin}\frac{\mathrm{4}\theta−\mathrm{2}\theta}{\mathrm{2}}\right)}\:\: \\ $$$$ \\ $$$$\Leftrightarrow\:\:\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left(\frac{{sin}\mathrm{2}\theta{sin}\theta}{{sin}\mathrm{3}\theta{sin}\theta}\right) \\ $$$$ \\ $$$$\Leftrightarrow\:\:\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{sin}\mathrm{2}\theta}{\mathrm{sin3}\theta}\:.\:\frac{\mathrm{2}\theta}{\mathrm{2}\theta}\:.\:\frac{\mathrm{3}\theta}{\mathrm{3}\theta}\:\:=\:\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{sin}\mathrm{2}\theta}{\mathrm{2}\theta}\:.\:\frac{\mathrm{3}\theta}{{sin}\mathrm{3}\theta}\:.\:\frac{\mathrm{2}\theta}{\mathrm{3}\theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{notice}}\::\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\boldsymbol{{ax}}}{\boldsymbol{{sin}}\left(\boldsymbol{{ax}}\right)}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\boldsymbol{{sin}}\left(\boldsymbol{{ax}}\right)}{\boldsymbol{{ax}}}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by peter frank last updated on 30/Nov/18

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$$$ \\ $$

Commented by afachri last updated on 30/Nov/18

your welcome, Sir.

$$\mathrm{your}\:\mathrm{welcome},\:\mathrm{Sir}. \\ $$

Answered by MJS last updated on 30/Nov/18

(2)  put θ=2arctan t  x=−((a(t−1)^2 )/(2t))  y=−((a(t+1))/(t−1)) ⇒ t=((y−a)/(y+a))  x=−((2a^3 )/((y^2 −a^2 ))) ⇔ y=±a(√((x−2a)/x))

$$\left(\mathrm{2}\right) \\ $$$$\mathrm{put}\:\theta=\mathrm{2arctan}\:{t} \\ $$$${x}=−\frac{{a}\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}{t}} \\ $$$${y}=−\frac{{a}\left({t}+\mathrm{1}\right)}{{t}−\mathrm{1}}\:\Rightarrow\:{t}=\frac{{y}−{a}}{{y}+{a}} \\ $$$${x}=−\frac{\mathrm{2}{a}^{\mathrm{3}} }{\left({y}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}\:\Leftrightarrow\:{y}=\pm{a}\sqrt{\frac{{x}−\mathrm{2}{a}}{{x}}} \\ $$

Answered by MJS last updated on 30/Nov/18

(2)  x=−((a(1−sin θ))/(sin θ)) ⇒ sin θ =(a/(a−x))  y=((a(1+sin θ))/(cos θ)) ⇒ cos θ =((a(x−2a))/((x−a)y))  sin^2  θ +cos^2  θ =1  ((a^2 (x^2 +y^2 −4a(x−a)))/(y^2 (x−a)^2 ))=1  ⇒ y=±a(√((x−2a)/x))

$$\left(\mathrm{2}\right) \\ $$$${x}=−\frac{{a}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)}{\mathrm{sin}\:\theta}\:\Rightarrow\:\mathrm{sin}\:\theta\:=\frac{{a}}{{a}−{x}} \\ $$$${y}=\frac{{a}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)}{\mathrm{cos}\:\theta}\:\Rightarrow\:\mathrm{cos}\:\theta\:=\frac{{a}\left({x}−\mathrm{2}{a}\right)}{\left({x}−{a}\right){y}} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\theta\:+\mathrm{cos}^{\mathrm{2}} \:\theta\:=\mathrm{1} \\ $$$$\frac{{a}^{\mathrm{2}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{a}\left({x}−{a}\right)\right)}{{y}^{\mathrm{2}} \left({x}−{a}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\:{y}=\pm{a}\sqrt{\frac{{x}−\mathrm{2}{a}}{{x}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com