Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48466 by Tawa1 last updated on 24/Nov/18

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Nov/18

A(1,3)  B(7,9)   D(4,6)  eqn AB  (y−3)=((9−3)/(7−1))(x−1)  y−3−x+1=0  y−x−2=0  point C(−2,0)  eqn DE  (y−6)=(−1)(x−4)  y−6+x−4=0  y+x−10=0  point E(10,0)  in triangle △CDE  C(−2,0)  D(4,6)  E(10,0)  area =(1/2)[x_1 (y_2 −y_3 )+x_2 (y_3 −y_1 )+x_3 (y_1 −y_2 )]  =(1/2)[(−2)(6−0)+4(0−0)+10(0−6)]  =(1/2)[−12−60]=−36    so area is 36 unit

$${A}\left(\mathrm{1},\mathrm{3}\right)\:\:{B}\left(\mathrm{7},\mathrm{9}\right)\:\:\:{D}\left(\mathrm{4},\mathrm{6}\right) \\ $$$${eqn}\:{AB}\:\:\left({y}−\mathrm{3}\right)=\frac{\mathrm{9}−\mathrm{3}}{\mathrm{7}−\mathrm{1}}\left({x}−\mathrm{1}\right) \\ $$$${y}−\mathrm{3}−{x}+\mathrm{1}=\mathrm{0} \\ $$$${y}−{x}−\mathrm{2}=\mathrm{0} \\ $$$${point}\:{C}\left(−\mathrm{2},\mathrm{0}\right) \\ $$$${eqn}\:{DE}\:\:\left({y}−\mathrm{6}\right)=\left(−\mathrm{1}\right)\left({x}−\mathrm{4}\right) \\ $$$${y}−\mathrm{6}+{x}−\mathrm{4}=\mathrm{0} \\ $$$${y}+{x}−\mathrm{10}=\mathrm{0} \\ $$$${point}\:{E}\left(\mathrm{10},\mathrm{0}\right) \\ $$$${in}\:{triangle}\:\bigtriangleup{CDE}\:\:{C}\left(−\mathrm{2},\mathrm{0}\right)\:\:{D}\left(\mathrm{4},\mathrm{6}\right)\:\:{E}\left(\mathrm{10},\mathrm{0}\right) \\ $$$${area}\:=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}_{\mathrm{1}} \left({y}_{\mathrm{2}} −{y}_{\mathrm{3}} \right)+{x}_{\mathrm{2}} \left({y}_{\mathrm{3}} −{y}_{\mathrm{1}} \right)+{x}_{\mathrm{3}} \left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\left(−\mathrm{2}\right)\left(\mathrm{6}−\mathrm{0}\right)+\mathrm{4}\left(\mathrm{0}−\mathrm{0}\right)+\mathrm{10}\left(\mathrm{0}−\mathrm{6}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[−\mathrm{12}−\mathrm{60}\right]=−\mathrm{36} \\ $$$$ \\ $$$${so}\:{area}\:{is}\:\mathrm{36}\:{unit} \\ $$

Commented by $@ty@m last updated on 24/Nov/18

Alternative;  In △CDE  C(−2,0)  D(4,6)  E(10,0)  ∴CD=(√(6^2 +6^2 ))=6(√2)  DE=(√(6^2 +6^2 ))=6(√2)  ∴ ar(△CDE )=(1/2)×6(√2)×6(√2)  =36 sq. unit

$${Alternative}; \\ $$$${In}\:\bigtriangleup{CDE}\:\:{C}\left(−\mathrm{2},\mathrm{0}\right)\:\:{D}\left(\mathrm{4},\mathrm{6}\right)\:\:{E}\left(\mathrm{10},\mathrm{0}\right) \\ $$$$\therefore{CD}=\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }=\mathrm{6}\sqrt{\mathrm{2}} \\ $$$${DE}=\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }=\mathrm{6}\sqrt{\mathrm{2}} \\ $$$$\therefore\:{ar}\left(\bigtriangleup{CDE}\:\right)=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{6}\sqrt{\mathrm{2}}×\mathrm{6}\sqrt{\mathrm{2}} \\ $$$$=\mathrm{36}\:{sq}.\:{unit} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 24/Nov/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com