Question Number 48447 by rahul 19 last updated on 24/Nov/18 | ||
$${Find}\:{the}\:{sum}\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{10}} {\sum}}\:^{\mathrm{20}} {C}_{{k}} \:. \\ $$ | ||
Commented by rahul 19 last updated on 24/Nov/18 | ||
$${i}\:{think}\:\mathrm{2}^{{nd}} \:{last}\:{line}\:{is}\:{wrong}... \\ $$$$\mathrm{3}\:{times}\:^{\mathrm{20}} {C}_{\mathrm{10}} \:{has}\:{been}\:{taken}\:..... \\ $$$${plss}\:{also}\:{tell}\:{final}\:{correct}\:{answer}.... \\ $$ | ||
Commented by rahul 19 last updated on 24/Nov/18 | ||
Commented by mr W last updated on 24/Nov/18 | ||
$${S}={C}_{\mathrm{0}} ^{\mathrm{20}} +{C}_{\mathrm{1}} ^{\mathrm{20}} +{C}_{\mathrm{2}} ^{\mathrm{20}} +{C}_{\mathrm{3}} ^{\mathrm{20}} +...+{C}_{\mathrm{10}} ^{\mathrm{20}} \\ $$$${C}_{\mathrm{0}} ^{\mathrm{20}} +{C}_{\mathrm{1}} ^{\mathrm{20}} +{C}_{\mathrm{2}} ^{\mathrm{20}} +{C}_{\mathrm{3}} ^{\mathrm{20}} +...+{C}_{\mathrm{10}} ^{\mathrm{20}} +{C}_{\mathrm{11}} ^{\mathrm{20}} +...+{C}_{\mathrm{20}} ^{\mathrm{20}} =\mathrm{2}^{\mathrm{20}} \\ $$$$\left[\left({C}_{\mathrm{0}} ^{\mathrm{20}} +{C}_{\mathrm{20}} ^{\mathrm{20}} \right)+\left({C}_{\mathrm{1}} ^{\mathrm{20}} +{C}_{\mathrm{19}} ^{\mathrm{20}} \right)+...+\left({C}_{\mathrm{10}} ^{\mathrm{20}} +{C}_{\mathrm{10}} ^{\mathrm{20}} \right)\right]−{C}_{\mathrm{10}} ^{\mathrm{20}} =\mathrm{2}^{\mathrm{20}} \\ $$$$\left[\mathrm{2}{C}_{\mathrm{0}} ^{\mathrm{20}} +\mathrm{2}{C}_{\mathrm{1}} ^{\mathrm{20}} +...+\mathrm{2}{C}_{\mathrm{10}} ^{\mathrm{20}} \right]−{C}_{\mathrm{10}} ^{\mathrm{20}} =\mathrm{2}^{\mathrm{20}} \\ $$$$\mathrm{2}\left[{C}_{\mathrm{0}} ^{\mathrm{20}} +{C}_{\mathrm{1}} ^{\mathrm{20}} +...+{C}_{\mathrm{10}} ^{\mathrm{20}} \right]−{C}_{\mathrm{10}} ^{\mathrm{20}} =\mathrm{2}^{\mathrm{20}} \\ $$$$\mathrm{2}{S}−{C}_{\mathrm{10}} ^{\mathrm{20}} =\mathrm{2}^{\mathrm{20}} \\ $$$$\Rightarrow{S}=\mathrm{2}^{\mathrm{19}} +\frac{{C}_{\mathrm{10}} ^{\mathrm{20}} }{\mathrm{2}} \\ $$ | ||
Commented by rahul 19 last updated on 24/Nov/18 | ||
thanks sir | ||