Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4839 by FilupSmith last updated on 17/Mar/16

(1)   S_1 =(√(1−4x))  (2)   S_2 =(√(1+4x))  For S_1 ,S_2 ∈Z, x=?

$$\left(\mathrm{1}\right)\:\:\:{S}_{\mathrm{1}} =\sqrt{\mathrm{1}−\mathrm{4}{x}} \\ $$$$\left(\mathrm{2}\right)\:\:\:{S}_{\mathrm{2}} =\sqrt{\mathrm{1}+\mathrm{4}{x}} \\ $$$$\mathrm{For}\:{S}_{\mathrm{1}} ,{S}_{\mathrm{2}} \in\mathbb{Z},\:{x}=? \\ $$

Commented by Yozzii last updated on 17/Mar/16

S_1 ∈Z⇒Let S_1 =n∈Z.  ∴ n^2 =1−4x⇒x=((1−n^2 )/4), n∈Z.  Checking, S_1 =(√(1−4(0.25(1−n^2 ))))  S_1 =(√n^2 )=∣n∣∈Z    Similarly, x=((m^2 −1)/4) where m∈Z   for S_2 ∈Z.

$${S}_{\mathrm{1}} \in\mathbb{Z}\Rightarrow{Let}\:{S}_{\mathrm{1}} ={n}\in\mathbb{Z}. \\ $$$$\therefore\:{n}^{\mathrm{2}} =\mathrm{1}−\mathrm{4}{x}\Rightarrow{x}=\frac{\mathrm{1}−{n}^{\mathrm{2}} }{\mathrm{4}},\:{n}\in\mathbb{Z}. \\ $$$${Checking},\:{S}_{\mathrm{1}} =\sqrt{\mathrm{1}−\mathrm{4}\left(\mathrm{0}.\mathrm{25}\left(\mathrm{1}−{n}^{\mathrm{2}} \right)\right)} \\ $$$${S}_{\mathrm{1}} =\sqrt{{n}^{\mathrm{2}} }=\mid{n}\mid\in\mathbb{Z} \\ $$$$ \\ $$$${Similarly},\:{x}=\frac{{m}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}}\:{where}\:{m}\in\mathbb{Z}\: \\ $$$${for}\:{S}_{\mathrm{2}} \in\mathbb{Z}. \\ $$

Answered by Rasheed Soomro last updated on 17/Mar/16

(1)   S=(√(1−4x))  (2)   S=(√(1+4x))  From (1) & (2)  (√(1−4x))=(√(1+4x))  1−4x=1+4x  8x=0  x=0

$$\left(\mathrm{1}\right)\:\:\:{S}=\sqrt{\mathrm{1}−\mathrm{4}{x}} \\ $$$$\left(\mathrm{2}\right)\:\:\:{S}=\sqrt{\mathrm{1}+\mathrm{4}{x}} \\ $$$${From}\:\left(\mathrm{1}\right)\:\&\:\left(\mathrm{2}\right) \\ $$$$\sqrt{\mathrm{1}−\mathrm{4}{x}}=\sqrt{\mathrm{1}+\mathrm{4}{x}} \\ $$$$\mathrm{1}−\mathrm{4}{x}=\mathrm{1}+\mathrm{4}{x} \\ $$$$\mathrm{8}{x}=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$

Commented by FilupSmith last updated on 17/Mar/16

sorry, didn′t ask properly. I meant that  (1) and (2) are different questions

$$\mathrm{sorry},\:\mathrm{didn}'\mathrm{t}\:\mathrm{ask}\:\mathrm{properly}.\:\mathrm{I}\:\mathrm{meant}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{are}\:\mathrm{different}\:\mathrm{questions} \\ $$$$ \\ $$

Answered by Rasheed Soomro last updated on 18/Mar/16

(√(1−4x)) ∈ Z ⇒1−4x is perfect square integer  Also,  (√(1+4x)) ∈Z ⇒1+4x≥0 ∧ 1−4x is perfect square integer  1−4x≥0⇒4x≤1⇒x≤(1/4).......(i)  1+4x≥0⇒4x≥−1⇒x≥−(1/4).....(ii)  From (i) & (ii)                          −(1/4)≤ x≤(1/4)  Continue

$$\sqrt{\mathrm{1}−\mathrm{4}{x}}\:\in\:\mathbb{Z}\:\Rightarrow\mathrm{1}−\mathrm{4}{x}\:{is}\:{perfect}\:{square}\:{integer} \\ $$$${Also},\:\:\sqrt{\mathrm{1}+\mathrm{4}{x}}\:\in\mathbb{Z}\:\Rightarrow\mathrm{1}+\mathrm{4}{x}\geqslant\mathrm{0}\:\wedge\:\mathrm{1}−\mathrm{4}{x}\:{is}\:{perfect}\:{square}\:{integer} \\ $$$$\mathrm{1}−\mathrm{4}{x}\geqslant\mathrm{0}\Rightarrow\mathrm{4}{x}\leqslant\mathrm{1}\Rightarrow{x}\leqslant\frac{\mathrm{1}}{\mathrm{4}}.......\left({i}\right) \\ $$$$\mathrm{1}+\mathrm{4}{x}\geqslant\mathrm{0}\Rightarrow\mathrm{4}{x}\geqslant−\mathrm{1}\Rightarrow{x}\geqslant−\frac{\mathrm{1}}{\mathrm{4}}.....\left({ii}\right) \\ $$$${From}\:\left({i}\right)\:\&\:\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{4}}\leqslant\:{x}\leqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${Continue} \\ $$

Answered by Rasheed Soomro last updated on 18/Mar/16

∵  S_1 ,S_2 ∈Z  ∴ 1−4x  and  1+4x are perfect square   positive integers.  Also sum of such numbers is 2:        [ (1−4x) +(1+4x)=2 ]  2 is the sum of 1 and 1, which are only perfect  square positive  integers.  So 1−4x=1 & 1+4x=1 ⇒ x=0.

$$\because\:\:{S}_{\mathrm{1}} ,{S}_{\mathrm{2}} \in\mathbb{Z} \\ $$$$\therefore\:\mathrm{1}−\mathrm{4}{x}\:\:{and}\:\:\mathrm{1}+\mathrm{4}{x}\:{are}\:{perfect}\:{square}\: \\ $$$${positive}\:{integers}. \\ $$$${Also}\:{sum}\:{of}\:{such}\:{numbers}\:{is}\:\mathrm{2}: \\ $$$$\:\:\:\:\:\:\left[\:\left(\mathrm{1}−\mathrm{4}{x}\right)\:+\left(\mathrm{1}+\mathrm{4}{x}\right)=\mathrm{2}\:\right] \\ $$$$\mathrm{2}\:{is}\:{the}\:{sum}\:{of}\:\mathrm{1}\:{and}\:\mathrm{1},\:{which}\:{are}\:{only}\:{perfect} \\ $$$${square}\:{positive}\:\:{integers}. \\ $$$${So}\:\mathrm{1}−\mathrm{4}{x}=\mathrm{1}\:\&\:\mathrm{1}+\mathrm{4}{x}=\mathrm{1}\:\Rightarrow\:{x}=\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com