Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 48307 by MJS last updated on 21/Nov/18

f(x)=x^x^(x−1)       [=x^((x^(x−1) )) ]  it′s a funny one...  f(1)=1  f(2)=2^2   f(3)=(3^3 )^3   f(4)=((4^4 )^4 )^4   f(5)=(((5^5 )^5 )^5 )^5   ...  find f′(x)

$${f}\left({x}\right)={x}^{{x}^{{x}−\mathrm{1}} } \:\:\:\:\:\left[={x}^{\left({x}^{{x}−\mathrm{1}} \right)} \right] \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{funny}\:\mathrm{one}... \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{2}^{\mathrm{2}} \\ $$$${f}\left(\mathrm{3}\right)=\left(\mathrm{3}^{\mathrm{3}} \right)^{\mathrm{3}} \\ $$$${f}\left(\mathrm{4}\right)=\left(\left(\mathrm{4}^{\mathrm{4}} \right)^{\mathrm{4}} \right)^{\mathrm{4}} \\ $$$${f}\left(\mathrm{5}\right)=\left(\left(\left(\mathrm{5}^{\mathrm{5}} \right)^{\mathrm{5}} \right)^{\mathrm{5}} \right)^{\mathrm{5}} \\ $$$$... \\ $$$$\mathrm{find}\:{f}'\left({x}\right) \\ $$

Commented by mr W last updated on 22/Nov/18

g(x)=x^(x−1) =e^((x−1)ln x)   g′(x)=e^((x−1)ln x) [((x−1)/x)+ln x]=x^(x−1) (1+ln x−(1/x))  f(x)=x^(g(x)) =e^(g(x) ln x )   f′(x)=e^(g(x) ln x) [((g(x))/x)+(ln x)g′(x)]  f′(x)=x^x^(x−1)  [(x^(x−1) /x)+(ln x)x^(x−1) (1+ln x−(1/x))]  ⇒f′(x)=x^x^(x−1)  x^(x−1) [((1−ln x)/x)+ln x+(ln x)^2 ]

$${g}\left({x}\right)={x}^{{x}−\mathrm{1}} ={e}^{\left({x}−\mathrm{1}\right)\mathrm{ln}\:{x}} \\ $$$${g}'\left({x}\right)={e}^{\left({x}−\mathrm{1}\right)\mathrm{ln}\:{x}} \left[\frac{{x}−\mathrm{1}}{{x}}+\mathrm{ln}\:{x}\right]={x}^{{x}−\mathrm{1}} \left(\mathrm{1}+\mathrm{ln}\:{x}−\frac{\mathrm{1}}{{x}}\right) \\ $$$${f}\left({x}\right)={x}^{{g}\left({x}\right)} ={e}^{{g}\left({x}\right)\:\mathrm{ln}\:{x}\:} \\ $$$${f}'\left({x}\right)={e}^{{g}\left({x}\right)\:\mathrm{ln}\:{x}} \left[\frac{{g}\left({x}\right)}{{x}}+\left(\mathrm{ln}\:{x}\right){g}'\left({x}\right)\right] \\ $$$${f}'\left({x}\right)={x}^{{x}^{{x}−\mathrm{1}} } \left[\frac{{x}^{{x}−\mathrm{1}} }{{x}}+\left(\mathrm{ln}\:{x}\right){x}^{{x}−\mathrm{1}} \left(\mathrm{1}+\mathrm{ln}\:{x}−\frac{\mathrm{1}}{{x}}\right)\right] \\ $$$$\Rightarrow{f}'\left({x}\right)={x}^{{x}^{{x}−\mathrm{1}} } {x}^{{x}−\mathrm{1}} \left[\frac{\mathrm{1}−\mathrm{ln}\:{x}}{{x}}+\mathrm{ln}\:{x}+\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \right] \\ $$

Commented by MJS last updated on 22/Nov/18

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com