Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 48246 by ajfour last updated on 21/Nov/18

Commented by ajfour last updated on 21/Nov/18

Find a/b , if the ellipse parameters  are even a and b.

$${Find}\:{a}/{b}\:,\:{if}\:{the}\:{ellipse}\:{parameters} \\ $$$${are}\:{even}\:{a}\:{and}\:{b}. \\ $$

Answered by mr W last updated on 21/Nov/18

(x^2 /a^2 )+(y^2 /b^2 )=1  (x/a^2 )+((yy′)/b^2 )=0  P(h,k)  y′=−((2b)/(2a))=−(b/a)  (h/(2b))=((2a)/(2(√(a^2 +b^2 ))))  ⇒h=((2ab)/(√(a^2 +b^2 )))  (h/a^2 )−(k/(ab))=0  ⇒k=((bh)/a)=((2b^2 )/(√(a^2 +b^2 )))  (h^2 /a^2 )+(k^2 /b^2 )=1  ((4a^2 b^2 )/(a^2 (a^2 +b^2 )))+((4b^4 )/(b^2 (a^2 +b^2 )))=1  ((8b^2 )/(a^2 +b^2 ))=1  7b^2 =a^2   ⇒(a/b)=(√7)=2.65

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{yy}'}{{b}^{\mathrm{2}} }=\mathrm{0} \\ $$$${P}\left({h},{k}\right) \\ $$$${y}'=−\frac{\mathrm{2}{b}}{\mathrm{2}{a}}=−\frac{{b}}{{a}} \\ $$$$\frac{{h}}{\mathrm{2}{b}}=\frac{\mathrm{2}{a}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\Rightarrow{h}=\frac{\mathrm{2}{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\frac{{h}}{{a}^{\mathrm{2}} }−\frac{{k}}{{ab}}=\mathrm{0} \\ $$$$\Rightarrow{k}=\frac{{bh}}{{a}}=\frac{\mathrm{2}{b}^{\mathrm{2}} }{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}+\frac{\mathrm{4}{b}^{\mathrm{4}} }{{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}=\mathrm{1} \\ $$$$\frac{\mathrm{8}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{7}{b}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\sqrt{\mathrm{7}}=\mathrm{2}.\mathrm{65} \\ $$

Commented by ajfour last updated on 21/Nov/18

Much better solution Sir!

$${Much}\:{better}\:{solution}\:{Sir}! \\ $$

Answered by ajfour last updated on 21/Nov/18

Let  P (h,k)  eq. of tangent        ((hx)/a^2 )+((ky)/b^2 ) = 1  slope = −tan θ = −(b^2 /a^2 )((h/k))   ..(i)  If angle of tangent with x-axes  is   π−θ , then      h = 2bcos θ = 2asin θ      h^2 ((1/a^2 )+(1/b^2 ))= 4       ....(ii)     ⇒  tan θ = (b/a)        ...(iii)  from  (i)&(iii)    (b^2 /a^2 )((h/k)) = (b/a)  ⇒  (h/k) = (a/b)   ...(iv)  Also    (h^2 /a^2 )+(k^2 /b^2 ) = 1  ⇒    h^2 ((1/a^2 )+(k^2 /h^2 )×(1/b^2 ))= 1  using (iii)           h^2 ((1/a^2 )+(1/a^2 )) = 1  ⇒   2h^2  = a^2     ......(v)  using (v) in (ii)         (a^2 /2)((1/a^2 )+(1/b^2 )) = 4  ⇒   1+(a^2 /b^2 ) = 8  or        (a/b) = (√7^ ) .

$${Let}\:\:{P}\:\left({h},{k}\right) \\ $$$${eq}.\:{of}\:{tangent} \\ $$$$\:\:\:\:\:\:\frac{{hx}}{{a}^{\mathrm{2}} }+\frac{{ky}}{{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$${slope}\:=\:−\mathrm{tan}\:\theta\:=\:−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\left(\frac{{h}}{{k}}\right)\:\:\:..\left({i}\right) \\ $$$${If}\:{angle}\:{of}\:{tangent}\:{with}\:{x}-{axes} \\ $$$${is}\:\:\:\pi−\theta\:,\:{then} \\ $$$$\:\:\:\:{h}\:=\:\mathrm{2}{b}\mathrm{cos}\:\theta\:=\:\mathrm{2}{a}\mathrm{sin}\:\theta \\ $$$$\:\:\:\:{h}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)=\:\mathrm{4}\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$$\:\:\:\Rightarrow\:\:\mathrm{tan}\:\theta\:=\:\frac{{b}}{{a}}\:\:\:\:\:\:\:\:...\left({iii}\right) \\ $$$${from}\:\:\left({i}\right)\&\left({iii}\right) \\ $$$$\:\:\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\left(\frac{{h}}{{k}}\right)\:=\:\frac{{b}}{{a}}\:\:\Rightarrow\:\:\frac{{h}}{{k}}\:=\:\frac{{a}}{{b}}\:\:\:...\left({iv}\right) \\ $$$${Also}\:\:\:\:\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:{h}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{h}^{\mathrm{2}} }×\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)=\:\mathrm{1} \\ $$$${using}\:\left({iii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{h}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\right)\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\mathrm{2}{h}^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} \:\:\:\:......\left({v}\right) \\ $$$${using}\:\left({v}\right)\:{in}\:\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)\:=\:\mathrm{4} \\ $$$$\Rightarrow\:\:\:\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{8} \\ $$$${or}\:\:\:\:\:\:\:\:\frac{{a}}{{b}}\:=\:\sqrt{\overset{} {\mathrm{7}}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com