Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48129 by kaivan.ahmadi last updated on 19/Nov/18

how we can show   _3_(√2)    on axis?

$$\mathrm{how}\:\mathrm{we}\:\mathrm{can}\:\mathrm{show}\:\:\:_{\mathrm{3}_{\sqrt{\mathrm{2}}} } \:\:\mathrm{on}\:\mathrm{axis}? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Nov/18

trying to solve...  1)first plot graph y=x^3   2)plot point p(0,2) on yaxis  3)draw straight line y=2 which is parallel  to x axis  4)let straight line y=2  cuts curve at point q   the co−oridinate of point q is (2^(1/3) ,2)  5)draw straight line parralel to yaxis from  point q  6)let this straight line cuts x axis at point say  M  so co ordinate of M is(2^(1/3) ,0)

$${trying}\:{to}\:{solve}... \\ $$$$\left.\mathrm{1}\right){first}\:{plot}\:{graph}\:{y}={x}^{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right){plot}\:{point}\:{p}\left(\mathrm{0},\mathrm{2}\right)\:{on}\:{yaxis} \\ $$$$\left.\mathrm{3}\right){draw}\:{straight}\:{line}\:{y}=\mathrm{2}\:{which}\:{is}\:{parallel} \\ $$$${to}\:{x}\:{axis} \\ $$$$\left.\mathrm{4}\right){let}\:{straight}\:{line}\:{y}=\mathrm{2}\:\:{cuts}\:{curve}\:{at}\:{point}\:{q} \\ $$$$\:{the}\:{co}−{oridinate}\:{of}\:{point}\:{q}\:{is}\:\left(\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{2}\right) \\ $$$$\left.\mathrm{5}\right){draw}\:{straight}\:{line}\:{parralel}\:{to}\:{yaxis}\:{from} \\ $$$${point}\:{q} \\ $$$$\left.\mathrm{6}\right){let}\:{this}\:{straight}\:{line}\:{cuts}\:{x}\:{axis}\:{at}\:{point}\:{say} \\ $$$${M}\:\:{so}\:{co}\:{ordinate}\:{of}\:{M}\:{is}\left(\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{0}\right) \\ $$

Commented by MJS last updated on 20/Nov/18

this works but there′s no way to exactly  construct it

$$\mathrm{this}\:\mathrm{works}\:\mathrm{but}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{way}\:\mathrm{to}\:\mathrm{exactly} \\ $$$$\mathrm{construct}\:\mathrm{it} \\ $$

Commented by kaivan.ahmadi last updated on 20/Nov/18

thank you sir.  would you show it geometricaly?

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{would}\:\mathrm{you}\:\mathrm{show}\:\mathrm{it}\:\mathrm{geometricaly}? \\ $$

Commented by MJS last updated on 20/Nov/18

it′s impossible.  it′s the old problem of “doubling the cube”  which has been proven impossible in the  19^(th)  century

$$\mathrm{it}'\mathrm{s}\:\mathrm{impossible}. \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{old}\:\mathrm{problem}\:\mathrm{of}\:``\mathrm{doubling}\:\mathrm{the}\:\mathrm{cube}'' \\ $$$$\mathrm{which}\:\mathrm{has}\:\mathrm{been}\:\mathrm{proven}\:\mathrm{impossible}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{19}^{\mathrm{th}} \:\mathrm{century} \\ $$

Commented by kaivan.ahmadi last updated on 20/Nov/18

thanks for ur answer

$$\mathrm{thanks}\:\mathrm{for}\:\mathrm{ur}\:\mathrm{answer} \\ $$

Commented by MJS last updated on 21/Nov/18

you can maybe use the approximation (2)^(1/3) ≈1.26 which  is .00008 units or .006% greater. 1.26^3 =2.000376

$$\mathrm{you}\:\mathrm{can}\:\mathrm{maybe}\:\mathrm{use}\:\mathrm{the}\:\mathrm{approximation}\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\approx\mathrm{1}.\mathrm{26}\:\mathrm{which} \\ $$$$\mathrm{is}\:.\mathrm{00008}\:\mathrm{units}\:\mathrm{or}\:.\mathrm{006\%}\:\mathrm{greater}.\:\mathrm{1}.\mathrm{26}^{\mathrm{3}} =\mathrm{2}.\mathrm{000376} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com