Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 48075 by MJS last updated on 19/Nov/18

solve     (∣x^2 −1∣−(1/2))x+((√6)/(18))=0

$$\mathrm{solve}\:\:\:\:\:\left(\mid{x}^{\mathrm{2}} −\mathrm{1}\mid−\frac{\mathrm{1}}{\mathrm{2}}\right){x}+\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}=\mathrm{0} \\ $$

Commented by MJS last updated on 19/Nov/18

case 1  x<−1  x^3 −(3/2)x+((√6)/(18))=0  x=−(√2)sin ((1/3)(π+arcsin ((√3)/9))) ≈−1.26781  case 2  −1≤x<1  −x^3 +(1/2)x+((√6)/(18))=0  D=(p^3 /(27))+(q^2 /4)=0 ⇒ x=−((√6)/6) ∨ x=((√6)/3)  case 3  1≤x  x^3 −(3/2)x+((√6)/(18))=0  x=(√2)cos ((1/6)(π+2arcsin ((√3)/9))) ≈1.17658

$$\mathrm{case}\:\mathrm{1} \\ $$$${x}<−\mathrm{1} \\ $$$${x}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}{x}+\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}=\mathrm{0} \\ $$$${x}=−\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\left(\pi+\mathrm{arcsin}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{9}}\right)\right)\:\approx−\mathrm{1}.\mathrm{26781} \\ $$$$\mathrm{case}\:\mathrm{2} \\ $$$$−\mathrm{1}\leqslant{x}<\mathrm{1} \\ $$$$−{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}=\mathrm{0} \\ $$$${D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0}\:\Rightarrow\:{x}=−\frac{\sqrt{\mathrm{6}}}{\mathrm{6}}\:\vee\:{x}=\frac{\sqrt{\mathrm{6}}}{\mathrm{3}} \\ $$$$\mathrm{case}\:\mathrm{3} \\ $$$$\mathrm{1}\leqslant{x} \\ $$$${x}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}{x}+\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}=\mathrm{0} \\ $$$${x}=\sqrt{\mathrm{2}}\mathrm{cos}\:\left(\frac{\mathrm{1}}{\mathrm{6}}\left(\pi+\mathrm{2arcsin}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{9}}\right)\right)\:\approx\mathrm{1}.\mathrm{17658} \\ $$

Answered by ajfour last updated on 19/Nov/18

For  ∣x∣≤ 1_(−)    let    ((√6)/(18)) = c  ⇒  ((1/2)−x^2 )x+c = 0  ⇒   x^3 −(x/2)−((√6)/(18)) = 0            where   ∣x∣ ≤ 1  ⇒    x ≈ 0.81649  For  ∣x∣ > 1        (x^2 −(3/2))x +c = 0  ⇒   x^3 −((3x)/2)+((√6)/(18)) = 0        where   ∣x∣ > 1  ⇒     x ≈ 1.17658  .

$$\underset{−} {{For}\:\:\mid{x}\mid\leqslant\:\mathrm{1}} \\ $$$$\:{let}\:\:\:\:\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}\:=\:{c} \\ $$$$\Rightarrow\:\:\left(\frac{\mathrm{1}}{\mathrm{2}}−{x}^{\mathrm{2}} \right){x}+{c}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:{x}^{\mathrm{3}} −\frac{{x}}{\mathrm{2}}−\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}\:=\:\mathrm{0}\:\:\:\:\:\: \\ $$$$\:\:\:\:{where}\:\:\:\mid{x}\mid\:\leqslant\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:{x}\:\approx\:\mathrm{0}.\mathrm{81649} \\ $$$${For}\:\:\mid{x}\mid\:>\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\left({x}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{2}}\right){x}\:+{c}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:{x}^{\mathrm{3}} −\frac{\mathrm{3}{x}}{\mathrm{2}}+\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:{where}\:\:\:\mid{x}\mid\:>\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\:{x}\:\approx\:\mathrm{1}.\mathrm{17658}\:\:. \\ $$

Commented by mr W last updated on 19/Nov/18

please check sir:  for ∣x∣≤1 there is another solution  x≈−0.4082  for ∣x∣>1 there is another solution  x≈−1.2678

$${please}\:{check}\:{sir}: \\ $$$${for}\:\mid{x}\mid\leqslant\mathrm{1}\:{there}\:{is}\:{another}\:{solution} \\ $$$${x}\approx−\mathrm{0}.\mathrm{4082} \\ $$$${for}\:\mid{x}\mid>\mathrm{1}\:{there}\:{is}\:{another}\:{solution} \\ $$$${x}\approx−\mathrm{1}.\mathrm{2678} \\ $$

Commented by ajfour last updated on 19/Nov/18

only the second one x ≈ −1.2678.

$${only}\:{the}\:{second}\:{one}\:{x}\:\approx\:−\mathrm{1}.\mathrm{2678}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com