Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48052 by ajfour last updated on 18/Nov/18

Commented by ajfour last updated on 18/Nov/18

Relate a,b,R,θ .

$${Relate}\:{a},{b},{R},\theta\:. \\ $$

Answered by mr W last updated on 19/Nov/18

(a+b)^2 =(a+R)^2 +(b+R)^2 −2(a+R)(b+R) cos (θ−sin^(−1) (a/(a+R))−sin^(−1) (b/(b+R)))  a^2 +b^2 +2ab=a^2 +R^2 +2aR+b^2 +R^2 +2bR−2(a+R)(b+R) cos (θ−sin^(−1) (a/(a+R))−sin^(−1) (b/(b+R)))  R^2 +(a+b)R−ab=(a+R)(b+R) cos (θ−sin^(−1) (a/(a+R))−sin^(−1) (b/(b+R)))  ⇒θ=cos^(−1) ((R^2 +(a+b)R−ab)/((a+R)(b+R)))+sin^(−1) (a/(a+R))+sin^(−1) (b/(b+R))  or  ((R^2 +(a+b)R−ab)/((a+R)(b+R)))=cos θ cos (sin^(−1) (a/(a+R))+sin^(−1) (b/(b+R)))+sin θ sin (sin^(−1) (a/(a+R))+sin^(−1) (b/(b+R)))  ((R^2 +(a+b)R−ab)/((a+R)(b+R)))=cos θ [((R(√((2a+R)(2b+R)))−ab)/((a+R)(b+R)))]+sin θ [((a(√(R(2b+R)))+b(√(R(2a+R))))/((a+R)(b+R)))]  ⇒R^2 +(a+b)R−ab=[R(√((2a+R)(2b+R)))−ab]cos θ+[a(√(R(2b+R)))+b(√(R(2a+R)))]sin θ

$$\left({a}+{b}\right)^{\mathrm{2}} =\left({a}+{R}\right)^{\mathrm{2}} +\left({b}+{R}\right)^{\mathrm{2}} −\mathrm{2}\left({a}+{R}\right)\left({b}+{R}\right)\:\mathrm{cos}\:\left(\theta−\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{a}+{R}}−\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{b}+{R}}\right) \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}={a}^{\mathrm{2}} +{R}^{\mathrm{2}} +\mathrm{2}{aR}+{b}^{\mathrm{2}} +{R}^{\mathrm{2}} +\mathrm{2}{bR}−\mathrm{2}\left({a}+{R}\right)\left({b}+{R}\right)\:\mathrm{cos}\:\left(\theta−\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{a}+{R}}−\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{b}+{R}}\right) \\ $$$${R}^{\mathrm{2}} +\left({a}+{b}\right){R}−{ab}=\left({a}+{R}\right)\left({b}+{R}\right)\:\mathrm{cos}\:\left(\theta−\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{a}+{R}}−\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{b}+{R}}\right) \\ $$$$\Rightarrow\theta=\mathrm{cos}^{−\mathrm{1}} \frac{{R}^{\mathrm{2}} +\left({a}+{b}\right){R}−{ab}}{\left({a}+{R}\right)\left({b}+{R}\right)}+\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{a}+{R}}+\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{b}+{R}} \\ $$$${or} \\ $$$$\frac{{R}^{\mathrm{2}} +\left({a}+{b}\right){R}−{ab}}{\left({a}+{R}\right)\left({b}+{R}\right)}=\mathrm{cos}\:\theta\:\mathrm{cos}\:\left(\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{a}+{R}}+\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{b}+{R}}\right)+\mathrm{sin}\:\theta\:\mathrm{sin}\:\left(\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{a}+{R}}+\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{b}+{R}}\right) \\ $$$$\frac{{R}^{\mathrm{2}} +\left({a}+{b}\right){R}−{ab}}{\left({a}+{R}\right)\left({b}+{R}\right)}=\mathrm{cos}\:\theta\:\left[\frac{{R}\sqrt{\left(\mathrm{2}{a}+{R}\right)\left(\mathrm{2}{b}+{R}\right)}−{ab}}{\left({a}+{R}\right)\left({b}+{R}\right)}\right]+\mathrm{sin}\:\theta\:\left[\frac{{a}\sqrt{{R}\left(\mathrm{2}{b}+{R}\right)}+{b}\sqrt{{R}\left(\mathrm{2}{a}+{R}\right)}}{\left({a}+{R}\right)\left({b}+{R}\right)}\right] \\ $$$$\Rightarrow{R}^{\mathrm{2}} +\left({a}+{b}\right){R}−{ab}=\left[{R}\sqrt{\left(\mathrm{2}{a}+{R}\right)\left(\mathrm{2}{b}+{R}\right)}−{ab}\right]\mathrm{cos}\:\theta+\left[{a}\sqrt{{R}\left(\mathrm{2}{b}+{R}\right)}+{b}\sqrt{{R}\left(\mathrm{2}{a}+{R}\right)}\right]\mathrm{sin}\:\theta \\ $$

Commented by ajfour last updated on 18/Nov/18

Thanks Sir.

$${Thanks}\:{Sir}. \\ $$

Answered by ajfour last updated on 18/Nov/18

let θ = β+δ+α  (R+b)sin β = b    cos δ = (((R+a)^2 +(R+b)^2 −(a+b)^2 )/(2(R+a)(R+b)))  (R+a)sin α = a    ⇒  cos (θ−β−α)=cos δ  cos θ(cos αcos β−sin αsin β)   + sin θ(sin αcos β+cos αsin β)       = cos δ .

$${let}\:\theta\:=\:\beta+\delta+\alpha \\ $$$$\left({R}+{b}\right)\mathrm{sin}\:\beta\:=\:{b} \\ $$$$\:\:\mathrm{cos}\:\delta\:=\:\frac{\left({R}+{a}\right)^{\mathrm{2}} +\left({R}+{b}\right)^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{2}\left({R}+{a}\right)\left({R}+{b}\right)} \\ $$$$\left({R}+{a}\right)\mathrm{sin}\:\alpha\:=\:{a} \\ $$$$ \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\left(\theta−\beta−\alpha\right)=\mathrm{cos}\:\delta \\ $$$$\mathrm{cos}\:\theta\left(\mathrm{cos}\:\alpha\mathrm{cos}\:\beta−\mathrm{sin}\:\alpha\mathrm{sin}\:\beta\right) \\ $$$$\:+\:\mathrm{sin}\:\theta\left(\mathrm{sin}\:\alpha\mathrm{cos}\:\beta+\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\right) \\ $$$$\:\:\:\:\:=\:\mathrm{cos}\:\delta\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com