Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 4790 by Dnilka228 last updated on 10/Mar/16

Function Γ is a+b  a+b=AB  a≠b−4  b−4=4+b  b=a−1  a−1=2  b=2  a=3  Function Γ is (a/b)+sin a+b  Γ=(a/b)+sin a+b  a=b−1  b=5  a=4  9−a=b  9−b=a  Funcion Γ is ((sin a+sin b)/(sin^(−1) a+sin^(−1) b))×(a+b)  sin a+sin b<c_1   c_1 =a×3  a=b+3  b=2  b+3=2+3  2+3=5  a=5  a×3=15  c_1 =15  c_2 =c_1 ÷5  c_1 ÷5=3  c_2 =3  c_1 +c_2 =c_3   c_3 =18  c_3 ≈sin a+b  a×b×2=20  sin 20=sin a+b  c_3 ≈20

$${Function}\:\Gamma\:{is}\:{a}+{b} \\ $$$${a}+{b}={AB} \\ $$$${a}\neq{b}−\mathrm{4} \\ $$$${b}−\mathrm{4}=\mathrm{4}+{b} \\ $$$${b}={a}−\mathrm{1} \\ $$$${a}−\mathrm{1}=\mathrm{2} \\ $$$${b}=\mathrm{2} \\ $$$${a}=\mathrm{3} \\ $$$${Function}\:\Gamma\:{is}\:\frac{{a}}{{b}}+\mathrm{sin}\:{a}+{b} \\ $$$$\Gamma=\frac{{a}}{{b}}+\mathrm{sin}\:{a}+{b} \\ $$$${a}={b}−\mathrm{1} \\ $$$${b}=\mathrm{5} \\ $$$${a}=\mathrm{4} \\ $$$$\mathrm{9}−{a}={b} \\ $$$$\mathrm{9}−{b}={a} \\ $$$${Funcion}\:\Gamma\:{is}\:\frac{\mathrm{sin}\:{a}+\mathrm{sin}\:{b}}{\mathrm{sin}^{−\mathrm{1}} {a}+\mathrm{sin}^{−\mathrm{1}} {b}}×\left({a}+{b}\right) \\ $$$$\mathrm{sin}\:{a}+\mathrm{sin}\:{b}<{c}_{\mathrm{1}} \\ $$$${c}_{\mathrm{1}} ={a}×\mathrm{3} \\ $$$${a}={b}+\mathrm{3} \\ $$$${b}=\mathrm{2} \\ $$$${b}+\mathrm{3}=\mathrm{2}+\mathrm{3} \\ $$$$\mathrm{2}+\mathrm{3}=\mathrm{5} \\ $$$${a}=\mathrm{5} \\ $$$${a}×\mathrm{3}=\mathrm{15} \\ $$$${c}_{\mathrm{1}} =\mathrm{15} \\ $$$${c}_{\mathrm{2}} ={c}_{\mathrm{1}} \boldsymbol{\div}\mathrm{5} \\ $$$${c}_{\mathrm{1}} \boldsymbol{\div}\mathrm{5}=\mathrm{3} \\ $$$${c}_{\mathrm{2}} =\mathrm{3} \\ $$$${c}_{\mathrm{1}} +{c}_{\mathrm{2}} ={c}_{\mathrm{3}} \\ $$$${c}_{\mathrm{3}} =\mathrm{18} \\ $$$${c}_{\mathrm{3}} \approx\mathrm{sin}\:{a}+{b} \\ $$$${a}×{b}×\mathrm{2}=\mathrm{20} \\ $$$$\mathrm{sin}\:\mathrm{20}=\mathrm{sin}\:{a}+{b} \\ $$$${c}_{\mathrm{3}} \approx\mathrm{20} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com