Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 4785 by Dnilka228 last updated on 10/Mar/16

n^i (n/(i×i))≈sin n^i +α

$${n}^{{i}} \frac{{n}}{{i}×{i}}\approx\mathrm{sin}\:{n}^{{i}} +\alpha \\ $$

Commented by Dnilka228 last updated on 10/Mar/16

n^i (n/(i×i))≠sin α+n^i   (√n^i )=sin n+sin i×(√2)  sin n^i ×f(x)=a+b=1,5  a=1, b=0,5

$${n}^{{i}} \frac{{n}}{{i}×{i}}\neq\mathrm{sin}\:\alpha+{n}^{{i}} \\ $$$$\sqrt{{n}^{{i}} }=\mathrm{sin}\:{n}+\mathrm{sin}\:{i}×\sqrt{\mathrm{2}} \\ $$$$\mathrm{sin}\:{n}^{{i}} ×{f}\left({x}\right)={a}+{b}=\mathrm{1},\mathrm{5} \\ $$$${a}=\mathrm{1},\:{b}=\mathrm{0},\mathrm{5} \\ $$

Commented by Dnilka228 last updated on 10/Mar/16

If a=1, sin a=sin 1  If b=0,5, sin b=sin 0,5

$${If}\:{a}=\mathrm{1},\:{sin}\:{a}={sin}\:\mathrm{1} \\ $$$${If}\:{b}=\mathrm{0},\mathrm{5},\:{sin}\:{b}={sin}\:\mathrm{0},\mathrm{5} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com