Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 47725 by Meritguide1234 last updated on 14/Nov/18

Commented by Meritguide1234 last updated on 15/Nov/18

ans is (√2)+1

$${ans}\:{is}\:\sqrt{\mathrm{2}}+\mathrm{1} \\ $$

Commented by maxmathsup by imad last updated on 15/Nov/18

this answer is not correct sir where come the number (√2)?....

$${this}\:{answer}\:{is}\:{not}\:{correct}\:{sir}\:{where}\:{come}\:{the}\:{number}\:\sqrt{\mathrm{2}}?.... \\ $$

Answered by maxmathsup by imad last updated on 15/Nov/18

if the Q. is find lim_(n→+∞) ((Σ_(k=0) ^n (√((√n)+(√k))))/(Σ_(k=0) ^n (√((√n)−(√k))))) let S_n =((Σ_(k=0) ^n (√((√n)+(√k))))/(Σ_(k=0) ^n (√((√n)−(√k)))))  we have S_n =((n^(1/4) Σ_(k=0) ^n (√(1+(√(k/n)))))/(n^(1/4) (√(1−(√(k/n)))))) =(((1/n)Σ_(k=0) ^n (√(1+(√(k/n)))))/((1/(n ))Σ_(k=0) ^n (√(1−(√(k/n)))))) so S_n is a Rieman sum  and lim_(n→+∞)  S_n =((∫_0 ^1 (√(1+(√x)))dx)/(∫_0 ^1 (√(1−(√x)))dx)) let calculate ∫_0 ^1  (√(1+(√x)))dx changement  (√(1+(√x)))=t give 1+(√x)=t^2  ⇒(√x)=t^2 −1 ⇒x=(t^2 −1)^2 =t^4 −2t^2  +1 ⇒  dx=4t^3 −4t)dt ⇒∫_0 ^1 (√(1+(√x)))dx =∫_1 ^2  t(4t^3 −4t)dt =4 ∫_1 ^2 (t^4 −t^2 )dt  =4[(t^5 /5) −(t^3 /3)]_1 ^2 =4 {(2^5 /5) −(2^3 /3) } =32{ (4/5) −(1/3)} =32.(7/(15)) =((224)/(15))  now let calculate  ∫_0 ^1  (√(1−(√x)))dx changement (√(1−(√x)))=t give 1−(√x)=t^2  ⇒(√x)=1−t^2  ⇒  x=(1−t^2 )^2 =t^4 −2t^2  +1 ⇒dx =(4t^3 −4t)dt ⇒  ∫_0 ^1 (√(1−(√x)))dx = −∫_0 ^1 t(4t^3 −4t)dt =−4 ∫_0 ^1 (t^4 −t^2 )dt   =4 ∫_0 ^1 (t^2 −t^4 )dt =4[(t^3 /3) −(t^5 /5)]_0 ^1  =4{(1/3) −(1/5)}=4.(2/(15)) =(8/(15)) ⇒  lim_(n→+∞)  S_n =((224)/8) =((112)/4) =((56)/2) =28 .

$${if}\:{the}\:{Q}.\:{is}\:{find}\:{lim}_{{n}\rightarrow+\infty} \frac{\sum_{{k}=\mathrm{0}} ^{{n}} \sqrt{\sqrt{{n}}+\sqrt{{k}}}}{\sum_{{k}=\mathrm{0}} ^{{n}} \sqrt{\sqrt{{n}}−\sqrt{{k}}}}\:{let}\:{S}_{{n}} =\frac{\sum_{{k}=\mathrm{0}} ^{{n}} \sqrt{\sqrt{{n}}+\sqrt{{k}}}}{\sum_{{k}=\mathrm{0}} ^{{n}} \sqrt{\sqrt{{n}}−\sqrt{{k}}}} \\ $$$${we}\:{have}\:{S}_{{n}} =\frac{{n}^{\frac{\mathrm{1}}{\mathrm{4}}} \sum_{{k}=\mathrm{0}} ^{{n}} \sqrt{\mathrm{1}+\sqrt{\frac{{k}}{{n}}}}}{{n}^{\frac{\mathrm{1}}{\mathrm{4}}} \sqrt{\mathrm{1}−\sqrt{\frac{{k}}{{n}}}}}\:=\frac{\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}} \sqrt{\mathrm{1}+\sqrt{\frac{{k}}{{n}}}}}{\frac{\mathrm{1}}{{n}\:}\sum_{{k}=\mathrm{0}} ^{{n}} \sqrt{\mathrm{1}−\sqrt{\frac{{k}}{{n}}}}}\:{so}\:{S}_{{n}} {is}\:{a}\:{Rieman}\:{sum} \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\sqrt{{x}}}{dx}}{\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\sqrt{{x}}}{dx}}\:{let}\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}+\sqrt{{x}}}{dx}\:{changement} \\ $$$$\sqrt{\mathrm{1}+\sqrt{{x}}}={t}\:{give}\:\mathrm{1}+\sqrt{{x}}={t}^{\mathrm{2}} \:\Rightarrow\sqrt{{x}}={t}^{\mathrm{2}} −\mathrm{1}\:\Rightarrow{x}=\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} ={t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}\:\Rightarrow \\ $$$$\left.{dx}=\mathrm{4}{t}^{\mathrm{3}} −\mathrm{4}{t}\right){dt}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\sqrt{{x}}}{dx}\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:{t}\left(\mathrm{4}{t}^{\mathrm{3}} −\mathrm{4}{t}\right){dt}\:=\mathrm{4}\:\int_{\mathrm{1}} ^{\mathrm{2}} \left({t}^{\mathrm{4}} −{t}^{\mathrm{2}} \right){dt} \\ $$$$=\mathrm{4}\left[\frac{{t}^{\mathrm{5}} }{\mathrm{5}}\:−\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{4}\:\left\{\frac{\mathrm{2}^{\mathrm{5}} }{\mathrm{5}}\:−\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{3}}\:\right\}\:=\mathrm{32}\left\{\:\frac{\mathrm{4}}{\mathrm{5}}\:−\frac{\mathrm{1}}{\mathrm{3}}\right\}\:=\mathrm{32}.\frac{\mathrm{7}}{\mathrm{15}}\:=\frac{\mathrm{224}}{\mathrm{15}}\:\:{now}\:{let}\:{calculate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}−\sqrt{{x}}}{dx}\:{changement}\:\sqrt{\mathrm{1}−\sqrt{{x}}}={t}\:{give}\:\mathrm{1}−\sqrt{{x}}={t}^{\mathrm{2}} \:\Rightarrow\sqrt{{x}}=\mathrm{1}−{t}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}=\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} ={t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}\:\Rightarrow{dx}\:=\left(\mathrm{4}{t}^{\mathrm{3}} −\mathrm{4}{t}\right){dt}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\sqrt{{x}}}{dx}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} {t}\left(\mathrm{4}{t}^{\mathrm{3}} −\mathrm{4}{t}\right){dt}\:=−\mathrm{4}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({t}^{\mathrm{4}} −{t}^{\mathrm{2}} \right){dt}\: \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({t}^{\mathrm{2}} −{t}^{\mathrm{4}} \right){dt}\:=\mathrm{4}\left[\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\:−\frac{{t}^{\mathrm{5}} }{\mathrm{5}}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\mathrm{4}\left\{\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{5}}\right\}=\mathrm{4}.\frac{\mathrm{2}}{\mathrm{15}}\:=\frac{\mathrm{8}}{\mathrm{15}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{224}}{\mathrm{8}}\:=\frac{\mathrm{112}}{\mathrm{4}}\:=\frac{\mathrm{56}}{\mathrm{2}}\:=\mathrm{28}\:. \\ $$$$ \\ $$

Commented by Meritguide1234 last updated on 16/Nov/18

Commented by Meritguide1234 last updated on 16/Nov/18

it gives same result if you opted to take limit and convert in limit form

$${it}\:{gives}\:{same}\:{result}\:{if}\:{you}\:{opted}\:{to}\:{take}\:{limit}\:{and}\:{convert}\:{in}\:{limit}\:{form} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com