Question Number 47621 by rahul 19 last updated on 12/Nov/18 | ||
$${Find}\:{locus}\:{of}\:{point}\:{P}\:{from}\:{which} \\ $$ $${tangents}\:{PA}\:\&\:{PB}\:{to}\:{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$ $${and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \:{respectively}\:{are}\:{perpendicular}. \\ $$ | ||
Commented byrahul 19 last updated on 12/Nov/18 | ||
$${Ans}\rightarrow\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} . \\ $$ | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Nov/18 | ||
$${tangent}\:{on}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \:{from}\:{p}\left(\alpha,\beta\right)\:{is} \\ $$ $${y}−\beta={m}\left({x}−\alpha\right) \\ $$ $${y}−{mx}+{m}\alpha−\beta=\mathrm{0} \\ $$ $${distance}\:{from}\:\left(\mathrm{0},\mathrm{0}\right)\:{is}\:{radius} \\ $$ $$\mid\frac{\mathrm{0}−\mathrm{0}+{m}\alpha−\beta}{\sqrt{\mathrm{1}^{\mathrm{2}} +{m}^{\mathrm{2}} }}\mid={a} \\ $$ $$\frac{{m}\alpha−\beta}{\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}={a} \\ $$ $${tangent}\:\:{on}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$ $${y}−\beta=−\frac{\mathrm{1}}{{m}}\left({x}−\alpha\right) \\ $$ $${my}−{m}\beta+{x}−\alpha=\mathrm{0} \\ $$ $$\mid\frac{−{m}\beta−\alpha}{\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}\mid={b} \\ $$ $$\frac{{m}\beta+\alpha}{\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}={b} \\ $$ $${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\frac{\left({m}\alpha−\beta\right)^{\mathrm{2}} +\left({m}\beta+\alpha\right)^{\mathrm{2}} }{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$ $${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\frac{\alpha^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right)+\beta^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)} \\ $$ $${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$ $${hence}\:{locus}\:{is} \\ $$ $${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$ | ||
Commented byrahul 19 last updated on 13/Nov/18 | ||
thanks sir | ||