Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 47497 by MrW3 last updated on 10/Nov/18

Commented by MrW3 last updated on 10/Nov/18

Find the area of the shadow of the  cylinder produced by a point source of  light S.    see also Q47449.

$${Find}\:{the}\:{area}\:{of}\:{the}\:{shadow}\:{of}\:{the} \\ $$$${cylinder}\:{produced}\:{by}\:{a}\:{point}\:{source}\:{of} \\ $$$${light}\:{S}. \\ $$$$ \\ $$$${see}\:{also}\:{Q}\mathrm{47449}. \\ $$

Answered by mr W last updated on 12/Nov/18

Commented by mr W last updated on 12/Nov/18

If the side wall of the cylinder were  transparent, we would only see the  shadow of cylinder′s top. Since the  top is a circle, it can be easily seen,  that its shadow has also the shape of  a circle.  (L/(d+r))=(H/(H−h))  ⇒L=((H(d+r))/(H−h))  ((2e)/(2r))=(H/(H−h))  ⇒e=((Hr)/(H−h))=b  cos θ=(r/d)  ⇒θ=cos^(−1) (r/d)  A_(shadow) =e(L−e) sin θ+πe^2 −θe^2 −πr^2   A_(shadow) =((Hr)/(H−h))[((H(d+r))/(H−h))−((Hr)/(H−h))]sin θ+(π−cos^(−1) (r/d))((H^2 r^2 )/((H−h)^2 ))−πr^2   ⇒A_(shadow) =((H^2 r)/((H−h)^2 ))[(√(d^2 −r^2 ))+r(π−cos^(−1) (r/d))]−πr^2

$${If}\:{the}\:{side}\:{wall}\:{of}\:{the}\:{cylinder}\:{were} \\ $$$${transparent},\:{we}\:{would}\:{only}\:{see}\:{the} \\ $$$${shadow}\:{of}\:{cylinder}'{s}\:{top}.\:{Since}\:{the} \\ $$$${top}\:{is}\:{a}\:{circle},\:{it}\:{can}\:{be}\:{easily}\:{seen}, \\ $$$${that}\:{its}\:{shadow}\:{has}\:{also}\:{the}\:{shape}\:{of} \\ $$$${a}\:{circle}. \\ $$$$\frac{{L}}{{d}+{r}}=\frac{{H}}{{H}−{h}} \\ $$$$\Rightarrow{L}=\frac{{H}\left({d}+{r}\right)}{{H}−{h}} \\ $$$$\frac{\mathrm{2}{e}}{\mathrm{2}{r}}=\frac{{H}}{{H}−{h}} \\ $$$$\Rightarrow{e}=\frac{{Hr}}{{H}−{h}}={b} \\ $$$$\mathrm{cos}\:\theta=\frac{{r}}{{d}} \\ $$$$\Rightarrow\theta=\mathrm{cos}^{−\mathrm{1}} \frac{{r}}{{d}} \\ $$$${A}_{{shadow}} ={e}\left({L}−{e}\right)\:\mathrm{sin}\:\theta+\pi{e}^{\mathrm{2}} −\theta{e}^{\mathrm{2}} −\pi{r}^{\mathrm{2}} \\ $$$${A}_{{shadow}} =\frac{{Hr}}{{H}−{h}}\left[\frac{{H}\left({d}+{r}\right)}{{H}−{h}}−\frac{{Hr}}{{H}−{h}}\right]\mathrm{sin}\:\theta+\left(\pi−\mathrm{cos}^{−\mathrm{1}} \frac{{r}}{{d}}\right)\frac{{H}^{\mathrm{2}} {r}^{\mathrm{2}} }{\left({H}−{h}\right)^{\mathrm{2}} }−\pi{r}^{\mathrm{2}} \\ $$$$\Rightarrow{A}_{{shadow}} =\frac{{H}^{\mathrm{2}} {r}}{\left({H}−{h}\right)^{\mathrm{2}} }\left[\sqrt{{d}^{\mathrm{2}} −{r}^{\mathrm{2}} }+{r}\left(\pi−\mathrm{cos}^{−\mathrm{1}} \frac{{r}}{{d}}\right)\right]−\pi{r}^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 14/Nov/18

Thank you Sir. I was mislead!

$${Thank}\:{you}\:{Sir}.\:{I}\:{was}\:{mislead}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com