Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 47471 by ajfour last updated on 10/Nov/18

Commented by ajfour last updated on 10/Nov/18

Find  y(θ).

$${Find}\:\:{y}\left(\theta\right). \\ $$

Commented by peter frank last updated on 25/Dec/21

what is name of this app

$$\mathrm{what}\:\mathrm{is}\:\mathrm{name}\:\mathrm{of}\:\mathrm{this}\:\mathrm{app} \\ $$

Answered by MrW3 last updated on 11/Nov/18

volume of water V=πR^2 h  θ_m =tan^(−1) (h/R)    case 1: θ≤θ_m   bottom of cantainer is submerged.  πR^2 (h_1 +h_2 )/2=πR^2 h  ⇒h_1 +h_2 =2h  h_2 −h_1 =2R tan θ  ⇒h_2 =h+R tan θ  y=h_2 cos θ=(h+R tan θ) cos θ  ⇒y(θ)=R sin θ+h cos θ with θ≤θ_m     case 2: θ>θ_m   bottom of container is not completely  submerged.  h_3 =R(1−cos α)  h_2 =h_3  tan θ=R(1−cos α)tan θ  A=(R^2 /2)(2α−sin 2α)=R^2 (α−sin α cos α)  V=((Ah_2 )/2)=((R^3 (α−sin α cos α)(1−cos α)tan θ)/2)=πR^2 h  ⇒((R(α−sin α cos α)(1−cos α)tan θ)/2)=πh  ⇒(α−sin α cos α)(1−cos α)=((2πh)/(R tan θ))  ⇒α=α(θ) (only numerically)  y=h_2  cos θ  ⇒y(θ)=R[1−cos α(θ)]sin θ

$${volume}\:{of}\:{water}\:{V}=\pi{R}^{\mathrm{2}} {h} \\ $$$$\theta_{{m}} =\mathrm{tan}^{−\mathrm{1}} \frac{{h}}{{R}} \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:\theta\leqslant\theta_{{m}} \\ $$$${bottom}\:{of}\:{cantainer}\:{is}\:{submerged}. \\ $$$$\pi{R}^{\mathrm{2}} \left({h}_{\mathrm{1}} +{h}_{\mathrm{2}} \right)/\mathrm{2}=\pi{R}^{\mathrm{2}} {h} \\ $$$$\Rightarrow{h}_{\mathrm{1}} +{h}_{\mathrm{2}} =\mathrm{2}{h} \\ $$$${h}_{\mathrm{2}} −{h}_{\mathrm{1}} =\mathrm{2}{R}\:\mathrm{tan}\:\theta \\ $$$$\Rightarrow{h}_{\mathrm{2}} ={h}+{R}\:\mathrm{tan}\:\theta \\ $$$${y}={h}_{\mathrm{2}} \mathrm{cos}\:\theta=\left({h}+{R}\:\mathrm{tan}\:\theta\right)\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{y}\left(\theta\right)={R}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\:{with}\:\theta\leqslant\theta_{{m}} \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:\theta>\theta_{{m}} \\ $$$${bottom}\:{of}\:{container}\:{is}\:{not}\:{completely} \\ $$$${submerged}. \\ $$$${h}_{\mathrm{3}} ={R}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right) \\ $$$${h}_{\mathrm{2}} ={h}_{\mathrm{3}} \:\mathrm{tan}\:\theta={R}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)\mathrm{tan}\:\theta \\ $$$${A}=\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\alpha−\mathrm{sin}\:\mathrm{2}\alpha\right)={R}^{\mathrm{2}} \left(\alpha−\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha\right) \\ $$$${V}=\frac{{Ah}_{\mathrm{2}} }{\mathrm{2}}=\frac{{R}^{\mathrm{3}} \left(\alpha−\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)\mathrm{tan}\:\theta}{\mathrm{2}}=\pi{R}^{\mathrm{2}} {h} \\ $$$$\Rightarrow\frac{{R}\left(\alpha−\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)\mathrm{tan}\:\theta}{\mathrm{2}}=\pi{h} \\ $$$$\Rightarrow\left(\alpha−\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha\right)\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)=\frac{\mathrm{2}\pi{h}}{{R}\:\mathrm{tan}\:\theta} \\ $$$$\Rightarrow\alpha=\alpha\left(\theta\right)\:\left({only}\:{numerically}\right) \\ $$$${y}={h}_{\mathrm{2}} \:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{y}\left(\theta\right)={R}\left[\mathrm{1}−\mathrm{cos}\:\alpha\left(\theta\right)\right]\mathrm{sin}\:\theta \\ $$

Commented by MrW3 last updated on 10/Nov/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com