Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 47407 by ajfour last updated on 09/Nov/18

Answered by ajfour last updated on 10/Nov/18

let BD = x , ∠A = φ, ∠C = θ  S_(ABCD)  = ((absin θ)/2)+((cdsin φ)/2)  x^2 = a^2 +b^2 −2abcos θ      = c^2 +d^2 −2cdcos φ  ⇒ (absin θ)(dθ/dx) = (cdsin φ)(dφ/dx) = 2x  (dS/dx) = 0 ⇒     (abcos θ)(dθ/dx)+(cdcos φ)(dφ/dx)=0  ⇒ cos θ+(cos φ)(((sin θ)/(sin φ)))= 0  ⇒  θ+φ = π  ⇒ a^2 +b^2 −2abcos θ                      = c^2 +d^2 +2cdcos θ  or    cos θ = ((a^2 +b^2 −c^2 −d^2 )/(2(ab+cd)))  (S_(ABCD) )_(max)  = ((sin θ)/2)(ab+cd)           = (((ab+cd))/2)(√(1−[((a^2 +b^2 −c^2 −d^2 )/(2(ab+cd)))]^2 ))     S_(max) = (1/4)(√(4(ab+cd)^2 −[(a^2 +b^2 )−(c^2 +d^2 )]^2 )) .

$${let}\:{BD}\:=\:{x}\:,\:\angle{A}\:=\:\phi,\:\angle{C}\:=\:\theta \\ $$$${S}_{{ABCD}} \:=\:\frac{{ab}\mathrm{sin}\:\theta}{\mathrm{2}}+\frac{{cd}\mathrm{sin}\:\phi}{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} =\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:=\:{c}^{\mathrm{2}} +{d}^{\mathrm{2}} −\mathrm{2}{cd}\mathrm{cos}\:\phi \\ $$$$\Rightarrow\:\left({ab}\mathrm{sin}\:\theta\right)\frac{{d}\theta}{{dx}}\:=\:\left({cd}\mathrm{sin}\:\phi\right)\frac{{d}\phi}{{dx}}\:=\:\mathrm{2}{x} \\ $$$$\frac{{dS}}{{dx}}\:=\:\mathrm{0}\:\Rightarrow \\ $$$$\:\:\:\left({ab}\mathrm{cos}\:\theta\right)\frac{{d}\theta}{{dx}}+\left({cd}\mathrm{cos}\:\phi\right)\frac{{d}\phi}{{dx}}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{cos}\:\theta+\left(\mathrm{cos}\:\phi\right)\left(\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\phi}\right)=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\theta+\phi\:=\:\pi \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\theta\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{c}^{\mathrm{2}} +{d}^{\mathrm{2}} +\mathrm{2}{cd}\mathrm{cos}\:\theta \\ $$$${or}\:\:\:\:\mathrm{cos}\:\theta\:=\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} −{d}^{\mathrm{2}} }{\mathrm{2}\left({ab}+{cd}\right)} \\ $$$$\left({S}_{{ABCD}} \right)_{{max}} \:=\:\frac{\mathrm{sin}\:\theta}{\mathrm{2}}\left({ab}+{cd}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\left({ab}+{cd}\right)}{\mathrm{2}}\sqrt{\mathrm{1}−\left[\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} −{d}^{\mathrm{2}} }{\mathrm{2}\left({ab}+{cd}\right)}\right]^{\mathrm{2}} }\: \\ $$$$\:\:{S}_{{max}} =\:\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{4}\left({ab}+{cd}\right)^{\mathrm{2}} −\left[\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\right]^{\mathrm{2}} }\:. \\ $$

Commented by mr W last updated on 10/Nov/18

thank you sir!  it shows the area reaches maximum  when the quadrilateral is inscribed in  a circle.

$${thank}\:{you}\:{sir}! \\ $$$${it}\:{shows}\:{the}\:{area}\:{reaches}\:{maximum} \\ $$$${when}\:{the}\:{quadrilateral}\:{is}\:{inscribed}\:{in} \\ $$$${a}\:{circle}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com