Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 47248 by maxmathsup by imad last updated on 06/Nov/18

calculate  ∫_(−1) ^1   ((ln(x+2))/((x+4)^2 −1))dx

$${calculate}\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}+\mathrm{2}\right)}{\left({x}+\mathrm{4}\right)^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$

Commented by maxmathsup by imad last updated on 16/Nov/18

let A = ∫_(−1) ^1  ((ln(x+2))/((x+4)^2 −1))dx ⇒ A =_(x+2=t)  ∫_1 ^3  ((ln(t))/((t+2)^2 −1))dt  =∫_1 ^3   ((ln(t))/((t+1)(t+3)))dt =(1/2)∫_1 ^3 {(1/(t+1)) −(1/(t+3))}ln(t)dt  =(1/2) ∫_1 ^3   ((ln(t))/(t+1))dt −(1/2) ∫_1 ^3   ((ln(t))/(t+3))dt   let determine ∫  ((ln(x))/(x+1))dx the calculator  give ∫ ((ln(x))/(x+1)) dx=ln(x)ln(x+1) +L_(i 2) (−x) ⇒  ∫_1 ^3   ((ln(t))/(t+1))dt =[ln(t)ln(t+1)+L_(i2) (−t)]_1 ^3 =2ln(3)ln(2) +L_(i2) (−3)  −L_(i2) (−1)  also  ∫  ((ln(x))/(x+3))dx =ln(x)ln((x/3)+1)+L_(i2) (−(x/3)) ⇒  ∫_1 ^3  ((ln(x))/(x+3)) =[ln(x)ln((x/3)+1)+L_(i2) (−(x/3))]_1 ^3   =ln(3)ln(2)+L_(i2) (−1)−L_(i2) (−(1/3))....

$${let}\:{A}\:=\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\frac{{ln}\left({x}+\mathrm{2}\right)}{\left({x}+\mathrm{4}\right)^{\mathrm{2}} −\mathrm{1}}{dx}\:\Rightarrow\:{A}\:=_{{x}+\mathrm{2}={t}} \:\int_{\mathrm{1}} ^{\mathrm{3}} \:\frac{{ln}\left({t}\right)}{\left({t}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{ln}\left({t}\right)}{\left({t}+\mathrm{1}\right)\left({t}+\mathrm{3}\right)}{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\mathrm{3}} \left\{\frac{\mathrm{1}}{{t}+\mathrm{1}}\:−\frac{\mathrm{1}}{{t}+\mathrm{3}}\right\}{ln}\left({t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{ln}\left({t}\right)}{{t}+\mathrm{1}}{dt}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{ln}\left({t}\right)}{{t}+\mathrm{3}}{dt}\:\:\:{let}\:{determine}\:\int\:\:\frac{{ln}\left({x}\right)}{{x}+\mathrm{1}}{dx}\:{the}\:{calculator} \\ $$$${give}\:\int\:\frac{{ln}\left({x}\right)}{{x}+\mathrm{1}}\:{dx}={ln}\left({x}\right){ln}\left({x}+\mathrm{1}\right)\:+{L}_{{i}\:\mathrm{2}} \left(−{x}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{ln}\left({t}\right)}{{t}+\mathrm{1}}{dt}\:=\left[{ln}\left({t}\right){ln}\left({t}+\mathrm{1}\right)+{L}_{{i}\mathrm{2}} \left(−{t}\right)\right]_{\mathrm{1}} ^{\mathrm{3}} =\mathrm{2}{ln}\left(\mathrm{3}\right){ln}\left(\mathrm{2}\right)\:+{L}_{{i}\mathrm{2}} \left(−\mathrm{3}\right) \\ $$$$−{L}_{{i}\mathrm{2}} \left(−\mathrm{1}\right)\:\:{also}\:\:\int\:\:\frac{{ln}\left({x}\right)}{{x}+\mathrm{3}}{dx}\:={ln}\left({x}\right){ln}\left(\frac{{x}}{\mathrm{3}}+\mathrm{1}\right)+{L}_{{i}\mathrm{2}} \left(−\frac{{x}}{\mathrm{3}}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\mathrm{3}} \:\frac{{ln}\left({x}\right)}{{x}+\mathrm{3}}\:=\left[{ln}\left({x}\right){ln}\left(\frac{{x}}{\mathrm{3}}+\mathrm{1}\right)+{L}_{{i}\mathrm{2}} \left(−\frac{{x}}{\mathrm{3}}\right)\right]_{\mathrm{1}} ^{\mathrm{3}} \\ $$$$={ln}\left(\mathrm{3}\right){ln}\left(\mathrm{2}\right)+{L}_{{i}\mathrm{2}} \left(−\mathrm{1}\right)−{L}_{{i}\mathrm{2}} \left(−\frac{\mathrm{1}}{\mathrm{3}}\right).... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com