Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 47145 by ajfour last updated on 05/Nov/18

Commented by ajfour last updated on 05/Nov/18

Q.47113   Find volume of  pyramid in terms of a,b,c,p,q,r.

$${Q}.\mathrm{47113}\:\:\:{Find}\:{volume}\:{of} \\ $$$${pyramid}\:{in}\:{terms}\:{of}\:{a},{b},{c},{p},{q},{r}. \\ $$

Answered by ajfour last updated on 05/Nov/18

let A be origin.  B(ccos φ,−csin φ,0)  C(bcos θ,bsin φ,0)  H(x,0,h)       x^2 +h^2 =p^2   ...(i)  (x−bcos θ)^2 +b^2 sin^2 θ+z^2  = r^2   ..(ii)  (x−ccos φ)^2 +c^2 sin^2 φ+z^2 = q^2   ..(iii)  (ccos φ−bcos θ)^2 +(bsin θ+csin φ)^2 =a^2   ..(iv)  (i)−(ii) ⇒     2bxcos θ = p^2 +b^2 −r^2  = l   ...(I)  (iii) ⇒     2cxcos φ = p^2 +c^2 −q^2  =m  ...(II)  (iv) ⇒    2bc(cos θcos φ−sin θsin φ)                  = b^2 +c^2 −a^2   = n    ...(III)  ⇒  ((lm)/(2x^2 ))−2bc(√((1−(l^2 /(4b^2 x^2 )))(1−(m^2 /(4c^2 x^2 ))))) = n  ⇒ (((lm)/(2x^2 ))−n)^2 =(1/4)(4b^2 −(l^2 /x^2 ))(4c^2 −(m^2 /x^2 ))  (lm−2nx^2 )^2 =(4b^2 x^2 −l^2 )(4c^2 x^2 −m^2 )  ⇒  4n^2 x^4 −4lmnx^2             = 16b^2 c^2 x^4 −4x^2 (c^2 l^2 +b^2 m^2 )  ⇒ x^2  = ((b^2 m^2 +c^2 l^2 −lmn)/(4b^2 c^2 −n^2 ))    and  h^2  = p^2 −x^2     Volume = (h/3)S_(ABC)    (may be).

$${let}\:{A}\:{be}\:{origin}. \\ $$$${B}\left({c}\mathrm{cos}\:\phi,−{c}\mathrm{sin}\:\phi,\mathrm{0}\right) \\ $$$${C}\left({b}\mathrm{cos}\:\theta,{b}\mathrm{sin}\:\phi,\mathrm{0}\right) \\ $$$${H}\left({x},\mathrm{0},{h}\right) \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} +{h}^{\mathrm{2}} ={p}^{\mathrm{2}} \:\:...\left({i}\right) \\ $$$$\left({x}−{b}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+{z}^{\mathrm{2}} \:=\:{r}^{\mathrm{2}} \:\:..\left({ii}\right) \\ $$$$\left({x}−{c}\mathrm{cos}\:\phi\right)^{\mathrm{2}} +{c}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \phi+{z}^{\mathrm{2}} =\:{q}^{\mathrm{2}} \:\:..\left({iii}\right) \\ $$$$\left({c}\mathrm{cos}\:\phi−{b}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\left({b}\mathrm{sin}\:\theta+{c}\mathrm{sin}\:\phi\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \:\:..\left({iv}\right) \\ $$$$\left({i}\right)−\left({ii}\right)\:\Rightarrow \\ $$$$\:\:\:\mathrm{2}{bx}\mathrm{cos}\:\theta\:=\:{p}^{\mathrm{2}} +{b}^{\mathrm{2}} −{r}^{\mathrm{2}} \:=\:{l}\:\:\:...\left({I}\right) \\ $$$$\left({iii}\right)\:\Rightarrow \\ $$$$\:\:\:\mathrm{2}{cx}\mathrm{cos}\:\phi\:=\:{p}^{\mathrm{2}} +{c}^{\mathrm{2}} −{q}^{\mathrm{2}} \:={m}\:\:...\left({II}\right) \\ $$$$\left({iv}\right)\:\Rightarrow \\ $$$$\:\:\mathrm{2}{bc}\left(\mathrm{cos}\:\theta\mathrm{cos}\:\phi−\mathrm{sin}\:\theta\mathrm{sin}\:\phi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} \:\:=\:{n}\:\:\:\:...\left({III}\right) \\ $$$$\Rightarrow\:\:\frac{{lm}}{\mathrm{2}{x}^{\mathrm{2}} }−\mathrm{2}{bc}\sqrt{\left(\mathrm{1}−\frac{{l}^{\mathrm{2}} }{\mathrm{4}{b}^{\mathrm{2}} {x}^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{m}^{\mathrm{2}} }{\mathrm{4}{c}^{\mathrm{2}} {x}^{\mathrm{2}} }\right)}\:=\:{n} \\ $$$$\Rightarrow\:\left(\frac{{lm}}{\mathrm{2}{x}^{\mathrm{2}} }−{n}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{4}{b}^{\mathrm{2}} −\frac{{l}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)\left(\mathrm{4}{c}^{\mathrm{2}} −\frac{{m}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right) \\ $$$$\left({lm}−\mathrm{2}{nx}^{\mathrm{2}} \right)^{\mathrm{2}} =\left(\mathrm{4}{b}^{\mathrm{2}} {x}^{\mathrm{2}} −{l}^{\mathrm{2}} \right)\left(\mathrm{4}{c}^{\mathrm{2}} {x}^{\mathrm{2}} −{m}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\mathrm{4}{n}^{\mathrm{2}} {x}^{\mathrm{4}} −\mathrm{4}{lmnx}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\mathrm{16}{b}^{\mathrm{2}} {c}^{\mathrm{2}} {x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{2}} \left({c}^{\mathrm{2}} {l}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} \:=\:\frac{{b}^{\mathrm{2}} {m}^{\mathrm{2}} +{c}^{\mathrm{2}} {l}^{\mathrm{2}} −{lmn}}{\mathrm{4}{b}^{\mathrm{2}} {c}^{\mathrm{2}} −{n}^{\mathrm{2}} } \\ $$$$\:\:{and}\:\:\boldsymbol{{h}}^{\mathrm{2}} \:=\:\boldsymbol{{p}}^{\mathrm{2}} −\boldsymbol{{x}}^{\mathrm{2}} \\ $$$$\:\:{Volume}\:=\:\frac{\boldsymbol{{h}}}{\mathrm{3}}\boldsymbol{{S}}_{{ABC}} \:\:\:\left({may}\:{be}\right). \\ $$

Commented by MrW3 last updated on 05/Nov/18

thank you for this method, sir. it  shows how to calculate the height of  pyramid.

$${thank}\:{you}\:{for}\:{this}\:{method},\:{sir}.\:{it} \\ $$$${shows}\:{how}\:{to}\:{calculate}\:{the}\:{height}\:{of} \\ $$$${pyramid}. \\ $$

Commented by ajfour last updated on 05/Nov/18

Will this do Sir ?

$${Will}\:{this}\:{do}\:{Sir}\:? \\ $$

Commented by ajfour last updated on 05/Nov/18

isn′t    V=(h/3)S_(ABC)     correct ?

$${isn}'{t}\:\:\:\:{V}=\frac{{h}}{\mathrm{3}}{S}_{{ABC}} \:\:\:\:{correct}\:? \\ $$

Commented by MrW3 last updated on 05/Nov/18

it is correct sir.

$${it}\:{is}\:{correct}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com