Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 47119 by math solver by abdo. last updated on 05/Nov/18

let u_n =∫_(−∞) ^∞  e^(−nx^2 +x) dx  1)calculate u_n   2)find Σ_n  u_n

$${let}\:{u}_{{n}} =\int_{−\infty} ^{\infty} \:{e}^{−{nx}^{\mathrm{2}} +{x}} {dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:\sum_{{n}} \:{u}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 05/Nov/18

1) we have u_n =∫_(−∞) ^(+∞)  e^(−{((√n)x)^2   −2 x (1/(2(√n))) +(1/(4n))−(1/(4n))}) dx   =e^(1/(4n))  ∫_(−∞) ^(+∞)   e^(−((√n)x−(1/((√n) )))^2 ) dx =_((√n)x−(1/(√n))=t) e^(1/(4n))  ∫_(−∞) ^(+∞)  e^(−t^2 )  (dt/(√n))  =(e^(1/(4n)) /(√n)) (√π) ⇒ u_n =((√π)/(√n)) e^(1/(4n))  .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{u}_{{n}} =\int_{−\infty} ^{+\infty} \:{e}^{−\left\{\left(\sqrt{{n}}{x}\right)^{\mathrm{2}} \:\:−\mathrm{2}\:{x}\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{n}}}\:+\frac{\mathrm{1}}{\mathrm{4}{n}}−\frac{\mathrm{1}}{\mathrm{4}{n}}\right\}} {dx}\: \\ $$$$={e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\sqrt{{n}}{x}−\frac{\mathrm{1}}{\sqrt{{n}}\:}\right)^{\mathrm{2}} } {dx}\:=_{\sqrt{{n}}{x}−\frac{\mathrm{1}}{\sqrt{{n}}}={t}} {e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \:\int_{−\infty} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } \:\frac{{dt}}{\sqrt{{n}}} \\ $$$$=\frac{{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} }{\sqrt{{n}}}\:\sqrt{\pi}\:\Rightarrow\:{u}_{{n}} =\frac{\sqrt{\pi}}{\sqrt{{n}}}\:{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com