Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 47111 by peter frank last updated on 04/Nov/18

Commented by MrW3 last updated on 04/Nov/18

((4!/2!)/(7!/3!/2!))=((4!3!)/(7!))=((3×2×1)/(7×6×5))=(1/(35))

$$\frac{\mathrm{4}!/\mathrm{2}!}{\mathrm{7}!/\mathrm{3}!/\mathrm{2}!}=\frac{\mathrm{4}!\mathrm{3}!}{\mathrm{7}!}=\frac{\mathrm{3}×\mathrm{2}×\mathrm{1}}{\mathrm{7}×\mathrm{6}×\mathrm{5}}=\frac{\mathrm{1}}{\mathrm{35}} \\ $$

Commented by peter frank last updated on 05/Nov/18

sorry sir more explanation

$$\mathrm{sorry}\:\mathrm{sir}\:\mathrm{more}\:\mathrm{explanation} \\ $$

Commented by MrW3 last updated on 05/Nov/18

total number of ways to arrange 7  letters is 7!, but there are 3 letters M  and 2 letters I, therefore the total  number of different ways to arrange  the letters from MINIMUM is  ((7!)/(3!2!))=420  now we put MMM at begining and arrange  the rest 4 letters. to arrange 4 letters  there are 4! ways, but 2 letters I are   identical, so the number of different  ways to arrange the 4 letters INIU is  ((4!)/(2!))=12  thus the probabilty that MMM begins  is  (((4!)/(2!))/((7!)/(3!2!)))=((12)/(420))=(((4!3!)/(7!))=((3!)/(7×6×5))=((3×2×1)/(7×6×5)))=(1/(35))

$${total}\:{number}\:{of}\:{ways}\:{to}\:{arrange}\:\mathrm{7} \\ $$$${letters}\:{is}\:\mathrm{7}!,\:{but}\:{there}\:{are}\:\mathrm{3}\:{letters}\:{M} \\ $$$${and}\:\mathrm{2}\:{letters}\:{I},\:{therefore}\:{the}\:{total} \\ $$$${number}\:{of}\:{different}\:{ways}\:{to}\:{arrange} \\ $$$${the}\:{letters}\:{from}\:{MINIMUM}\:{is} \\ $$$$\frac{\mathrm{7}!}{\mathrm{3}!\mathrm{2}!}=\mathrm{420} \\ $$$${now}\:{we}\:{put}\:{MMM}\:{at}\:{begining}\:{and}\:{arrange} \\ $$$${the}\:{rest}\:\mathrm{4}\:{letters}.\:{to}\:{arrange}\:\mathrm{4}\:{letters} \\ $$$${there}\:{are}\:\mathrm{4}!\:{ways},\:{but}\:\mathrm{2}\:{letters}\:{I}\:{are}\: \\ $$$${identical},\:{so}\:{the}\:{number}\:{of}\:{different} \\ $$$${ways}\:{to}\:{arrange}\:{the}\:\mathrm{4}\:{letters}\:{INIU}\:{is} \\ $$$$\frac{\mathrm{4}!}{\mathrm{2}!}=\mathrm{12} \\ $$$${thus}\:{the}\:{probabilty}\:{that}\:{MMM}\:{begins} \\ $$$${is} \\ $$$$\frac{\frac{\mathrm{4}!}{\mathrm{2}!}}{\frac{\mathrm{7}!}{\mathrm{3}!\mathrm{2}!}}=\frac{\mathrm{12}}{\mathrm{420}}=\left(\frac{\mathrm{4}!\mathrm{3}!}{\mathrm{7}!}=\frac{\mathrm{3}!}{\mathrm{7}×\mathrm{6}×\mathrm{5}}=\frac{\mathrm{3}×\mathrm{2}×\mathrm{1}}{\mathrm{7}×\mathrm{6}×\mathrm{5}}\right)=\frac{\mathrm{1}}{\mathrm{35}} \\ $$

Commented by peter frank last updated on 05/Nov/18

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com