Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46844 by maxmathsup by imad last updated on 01/Nov/18

calculate  ∫_0 ^∞  e^(−2t) ln(1+3t)dt

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{t}} {ln}\left(\mathrm{1}+\mathrm{3}{t}\right){dt}\: \\ $$

Commented by maxmathsup by imad last updated on 04/Nov/18

let A =∫_0 ^∞ e^(−2t) ln(1+3t)dt changement 1+3t =x give t=((x−1)/3) ⇒  A =∫_1 ^(+∞)  e^(−2((x−1)/3)) ln(x)(dx/3) =(1/3) e^(2/(3 ))  ∫_1 ^(+∞)  e^((−2x)/3)  ln(x)dx let find for λ>0  W_λ =∫_1 ^(+∞)  e^(−λx) ln(x)dx by parts W_λ =[−(1/λ)e^(−λx) ln(x)]_1 ^(+∞)  +(1/λ)∫_1 ^(+∞)  e^(−λx) (dx/x)  =(1/λ) ∫_1 ^(+∞)  e^(−(λ+1)x) dx =(1/λ)[−(1/(λ+1)) e^(−(λ+1)x) ]_1 ^(+∞) =((−1)/(λ(λ+1)))(−e^(−(λ+1)) )  =(e^(−λ−1) /(λ(λ+1))) ⇒∫_1 ^(+∞)  e^((−2x)/3) lnx)dx = (e^(−(2/3)−1) /((2/3)((2/3)+1))) =(3/2) .(3/5) e^(−(5/3))   =(9/(10)) e^(−(5/3))  ⇒ A =(1/3) e^(2/3)  (9/(10)) e^(−(5/3))  = (3/(10)) e^(−1)  =(3/(10e)) .

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{2}{t}} {ln}\left(\mathrm{1}+\mathrm{3}{t}\right){dt}\:{changement}\:\mathrm{1}+\mathrm{3}{t}\:={x}\:{give}\:{t}=\frac{{x}−\mathrm{1}}{\mathrm{3}}\:\Rightarrow \\ $$$${A}\:=\int_{\mathrm{1}} ^{+\infty} \:{e}^{−\mathrm{2}\frac{{x}−\mathrm{1}}{\mathrm{3}}} {ln}\left({x}\right)\frac{{dx}}{\mathrm{3}}\:=\frac{\mathrm{1}}{\mathrm{3}}\:{e}^{\frac{\mathrm{2}}{\mathrm{3}\:}} \:\int_{\mathrm{1}} ^{+\infty} \:{e}^{\frac{−\mathrm{2}{x}}{\mathrm{3}}} \:{ln}\left({x}\right){dx}\:{let}\:{find}\:{for}\:\lambda>\mathrm{0} \\ $$$${W}_{\lambda} =\int_{\mathrm{1}} ^{+\infty} \:{e}^{−\lambda{x}} {ln}\left({x}\right){dx}\:{by}\:{parts}\:{W}_{\lambda} =\left[−\frac{\mathrm{1}}{\lambda}{e}^{−\lambda{x}} {ln}\left({x}\right)\right]_{\mathrm{1}} ^{+\infty} \:+\frac{\mathrm{1}}{\lambda}\int_{\mathrm{1}} ^{+\infty} \:{e}^{−\lambda{x}} \frac{{dx}}{{x}} \\ $$$$=\frac{\mathrm{1}}{\lambda}\:\int_{\mathrm{1}} ^{+\infty} \:{e}^{−\left(\lambda+\mathrm{1}\right){x}} {dx}\:=\frac{\mathrm{1}}{\lambda}\left[−\frac{\mathrm{1}}{\lambda+\mathrm{1}}\:{e}^{−\left(\lambda+\mathrm{1}\right){x}} \right]_{\mathrm{1}} ^{+\infty} =\frac{−\mathrm{1}}{\lambda\left(\lambda+\mathrm{1}\right)}\left(−{e}^{−\left(\lambda+\mathrm{1}\right)} \right) \\ $$$$\left.=\frac{{e}^{−\lambda−\mathrm{1}} }{\lambda\left(\lambda+\mathrm{1}\right)}\:\Rightarrow\int_{\mathrm{1}} ^{+\infty} \:{e}^{\frac{−\mathrm{2}{x}}{\mathrm{3}}} {lnx}\right){dx}\:=\:\frac{{e}^{−\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{1}} }{\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{1}\right)}\:=\frac{\mathrm{3}}{\mathrm{2}}\:.\frac{\mathrm{3}}{\mathrm{5}}\:{e}^{−\frac{\mathrm{5}}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{9}}{\mathrm{10}}\:{e}^{−\frac{\mathrm{5}}{\mathrm{3}}} \:\Rightarrow\:{A}\:=\frac{\mathrm{1}}{\mathrm{3}}\:{e}^{\frac{\mathrm{2}}{\mathrm{3}}} \:\frac{\mathrm{9}}{\mathrm{10}}\:{e}^{−\frac{\mathrm{5}}{\mathrm{3}}} \:=\:\frac{\mathrm{3}}{\mathrm{10}}\:{e}^{−\mathrm{1}} \:=\frac{\mathrm{3}}{\mathrm{10}{e}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com