Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 46737 by peter frank last updated on 30/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 31/Oct/18

Q(asinθ_1 ,bcosθ_1 )  R(asinθ_2 ,bcosθ_2 )  mid point QR is P  P=((a(sinθ_1 +sinθ_2 ))/2),((b(cosθ_1 +cosθ_2 ))/2)  ={a.sin(((θ_1 +θ_2 )/2))cos(((θ_1 −θ_2 )/2)) ,bcos(((θ_1 +θ_2 )/2))cos(((θ_1 −θ_2 )/2)}  α=asin(((θ_1 +θ_2 )/2))cos(((θ_1 −θ_2 )/2))  β=bcos(((θ_1 +θ_2 )/2))cos(((θ_1 −θ_2 )/2))  (∝/β)=(a/b)tan(((θ_1 +θ_2 )/2))  now the eqn of st line  ((y−bcosθ_1 )/(b(cosθ_2 −cosθ_1 )))=((x−asinθ_1 )/(a(sinθ_2 −sinθ_1 )))  gradient m=((b(cosθ_2 −cosθ_1 ))/(a(sinθ_2 −sinθ_1 )))=(b/a)×((2sin(((θ_1 +θ_2 )/2))sin(((θ_1 −θ_2 )/2)))/(2cos(((θ_1 +θ_2 )/2))sin(((θ_2 −θ_1 )/2))))  m=−(b/a)×tan(((θ_1 +θ_2 )/2))  tan(((θ_1 +θ_2 )/2))=((−ma)/b)      [m=constant gradient]  it is already derived  (α/β)=(a/b)tan(((θ_1 +θ_2 )/2))     (α/β)=(a/b)×((−ma)/b)  so locus is  (x/y)=((−ma^2 )/b^2 )  ((b^2 x)/(a^2 y))+m=0   [

$${Q}\left({asin}\theta_{\mathrm{1}} ,{bcos}\theta_{\mathrm{1}} \right) \\ $$$${R}\left({asin}\theta_{\mathrm{2}} ,{bcos}\theta_{\mathrm{2}} \right) \\ $$$${mid}\:{point}\:{QR}\:{is}\:{P} \\ $$$${P}=\frac{{a}\left({sin}\theta_{\mathrm{1}} +{sin}\theta_{\mathrm{2}} \right)}{\mathrm{2}},\frac{{b}\left({cos}\theta_{\mathrm{1}} +{cos}\theta_{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$$=\left\{{a}.{sin}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right){cos}\left(\frac{\theta_{\mathrm{1}} −\theta_{\mathrm{2}} }{\mathrm{2}}\right)\:,{bcos}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right){cos}\left(\frac{\theta_{\mathrm{1}} −\theta_{\mathrm{2}} }{\mathrm{2}}\right\}\right. \\ $$$$\alpha={asin}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right){cos}\left(\frac{\theta_{\mathrm{1}} −\theta_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\beta={bcos}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right){cos}\left(\frac{\theta_{\mathrm{1}} −\theta_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\frac{\propto}{\beta}=\frac{{a}}{{b}}{tan}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$${now}\:{the}\:{eqn}\:{of}\:{st}\:{line} \\ $$$$\frac{{y}−{bcos}\theta_{\mathrm{1}} }{{b}\left({cos}\theta_{\mathrm{2}} −{cos}\theta_{\mathrm{1}} \right)}=\frac{{x}−{asin}\theta_{\mathrm{1}} }{{a}\left({sin}\theta_{\mathrm{2}} −{sin}\theta_{\mathrm{1}} \right)} \\ $$$${gradient}\:{m}=\frac{{b}\left({cos}\theta_{\mathrm{2}} −{cos}\theta_{\mathrm{1}} \right)}{{a}\left({sin}\theta_{\mathrm{2}} −{sin}\theta_{\mathrm{1}} \right)}=\frac{{b}}{{a}}×\frac{\mathrm{2}{sin}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right){sin}\left(\frac{\theta_{\mathrm{1}} −\theta_{\mathrm{2}} }{\mathrm{2}}\right)}{\mathrm{2}{cos}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right){sin}\left(\frac{\theta_{\mathrm{2}} −\theta_{\mathrm{1}} }{\mathrm{2}}\right)} \\ $$$${m}=−\frac{{b}}{{a}}×{tan}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$${tan}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right)=\frac{−{ma}}{{b}}\:\:\:\:\:\:\left[{m}={constant}\:{gradient}\right] \\ $$$${it}\:{is}\:{already}\:{derived} \\ $$$$\frac{\alpha}{\beta}=\frac{{a}}{{b}}{tan}\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\:\:\:\frac{\alpha}{\beta}=\frac{{a}}{{b}}×\frac{−{ma}}{{b}} \\ $$$${so}\:{locus}\:{is} \\ $$$$\frac{{x}}{{y}}=\frac{−{ma}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}}+{m}=\mathrm{0}\:\:\:\left[\right. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by peter frank last updated on 31/Oct/18

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by MrW3 last updated on 31/Oct/18

Q(x_1 ,y_1 ) and R(x_2 ,y_2 )  (x_1 ^2 /a^2 )+(y_1 ^2 /b^2 )=1   ...(i)  (x_2 ^2 /a^2 )+(y_2 ^2 /b^2 )=1   ...(ii)  ((y_2 −y_1 )/(x_2 −x_1 ))=m   ...(iii)  P(u,v) with u=((x_1 +x_2 )/2),v=((y_1 +y_2 )/2)  (ii)−(i):  (((x_1 +x_2 )(x_2 −x_1 ))/a^2 )+(((y_1 +y_2 )(y_2 −y_1 ))/b^2 )=0  (((x_1 +x_2 ))/(2a^2 ))+(((y_1 +y_2 )(y_2 −y_1 ))/(2b^2 (x_2 −x_1 )))=0  (u/a^2 )+((vm)/b^2 )=0  or  (x/a^2 )+((my)/b^2 )=0 or y=−(b^2 /(ma^2 ))x  i.e. the locus of point P is a section of line.

$${Q}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:{and}\:{R}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right) \\ $$$$\frac{{x}_{\mathrm{1}} ^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}_{\mathrm{1}} ^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:...\left({i}\right) \\ $$$$\frac{{x}_{\mathrm{2}} ^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}_{\mathrm{2}} ^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:...\left({ii}\right) \\ $$$$\frac{{y}_{\mathrm{2}} −{y}_{\mathrm{1}} }{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }={m}\:\:\:...\left({iii}\right) \\ $$$${P}\left({u},{v}\right)\:{with}\:{u}=\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} }{\mathrm{2}},{v}=\frac{{y}_{\mathrm{1}} +{y}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$$\frac{\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)}{{a}^{\mathrm{2}} }+\frac{\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)\left({y}_{\mathrm{2}} −{y}_{\mathrm{1}} \right)}{{b}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)}{\mathrm{2}{a}^{\mathrm{2}} }+\frac{\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)\left({y}_{\mathrm{2}} −{y}_{\mathrm{1}} \right)}{\mathrm{2}{b}^{\mathrm{2}} \left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)}=\mathrm{0} \\ $$$$\frac{{u}}{{a}^{\mathrm{2}} }+\frac{{vm}}{{b}^{\mathrm{2}} }=\mathrm{0} \\ $$$${or} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{my}}{{b}^{\mathrm{2}} }=\mathrm{0}\:{or}\:{y}=−\frac{{b}^{\mathrm{2}} }{{ma}^{\mathrm{2}} }{x} \\ $$$${i}.{e}.\:{the}\:{locus}\:{of}\:{point}\:{P}\:{is}\:{a}\:{section}\:{of}\:{line}. \\ $$

Commented by peter frank last updated on 31/Oct/18

thank you

$$\mathrm{thank}\:\mathrm{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com