Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 45840 by Rauny last updated on 17/Oct/18

a≦7⇒P(!∃x_a )=0,  b≦9⇒Q(!∃y_b )=0 for a, b∈N  And A⊋A′: A={(x, y)∣P(x)∙Q(y)=0}=A′,  B_(∈A) ={(x, y)∈A∣x=y}  Then ∀t∈N: ∣B∣=n(t)=f(P(x), Q(y)),  also only t can be in [N, M].  find M.  :(

$${a}\leqq\mathrm{7}\Rightarrow\mathrm{P}\left(!\exists{x}_{{a}} \right)=\mathrm{0}, \\ $$$${b}\leqq\mathrm{9}\Rightarrow\mathrm{Q}\left(!\exists{y}_{{b}} \right)=\mathrm{0}\:\mathrm{for}\:{a},\:{b}\in\mathbb{N} \\ $$$$\mathrm{And}\:{A}\supsetneq{A}':\:{A}=\left\{\left({x},\:{y}\right)\mid\mathrm{P}\left({x}\right)\centerdot\mathrm{Q}\left({y}\right)=\mathrm{0}\right\}={A}', \\ $$$${B}_{\in{A}} =\left\{\left({x},\:{y}\right)\in{A}\mid{x}={y}\right\} \\ $$$$\mathrm{Then}\:\forall{t}\in\mathbb{N}:\:\mid{B}\mid={n}\left({t}\right)={f}\left(\mathrm{P}\left({x}\right),\:\mathrm{Q}\left({y}\right)\right), \\ $$$$\mathrm{also}\:\mathrm{only}\:{t}\:\mathrm{can}\:\mathrm{be}\:\mathrm{in}\:\left[{N},\:{M}\right]. \\ $$$$\mathrm{find}\:{M}. \\ $$$$:\left(\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com