Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43008 by MJS last updated on 06/Sep/18

(y′)^2 =−1+sin x  y=?

$$\left({y}'\right)^{\mathrm{2}} =−\mathrm{1}+\mathrm{sin}\:{x} \\ $$$${y}=? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Sep/18

(dy/dx)=(√(−1+sinx))   (dy/dx)=(√(−1(1−sinx)))   (dy/dx)=i(√(sin^2 (x/2)−2sin(x/2)cos(x/2)+cos^2 (x/2)))  (dy/dx)=i(sin(x/2)−cos(x/2))    dy=i(sin(x/2)−cos(x/2))dx  y=i(−2cos(x/2)−2sin(x/2))+c← ans  recheck  y=−2i(cos(x/2)+sin(x/2))  (dy/dx)=−2i(−(1/2)sin(x/2)+(1/2)cos(x/2))  (dy/dx)=i(sin(x/2)−cos(x/2))  ((dy/dx))^2 =−1(1−sinx)  ((dy/dx))^2 =(−1+sinx)  is it right or wrong pls check...

$$\frac{{dy}}{{dx}}=\sqrt{−\mathrm{1}+{sinx}}\: \\ $$$$\frac{{dy}}{{dx}}=\sqrt{−\mathrm{1}\left(\mathrm{1}−{sinx}\right)}\: \\ $$$$\frac{{dy}}{{dx}}={i}\sqrt{{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}−\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}+{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$\frac{{dy}}{{dx}}={i}\left({sin}\frac{{x}}{\mathrm{2}}−{cos}\frac{{x}}{\mathrm{2}}\right)\:\: \\ $$$${dy}={i}\left({sin}\frac{{x}}{\mathrm{2}}−{cos}\frac{{x}}{\mathrm{2}}\right){dx} \\ $$$${y}={i}\left(−\mathrm{2}{cos}\frac{{x}}{\mathrm{2}}−\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}\right)+{c}\leftarrow\:{ans} \\ $$$${recheck} \\ $$$${y}=−\mathrm{2}{i}\left({cos}\frac{{x}}{\mathrm{2}}+{sin}\frac{{x}}{\mathrm{2}}\right) \\ $$$$\frac{{dy}}{{dx}}=−\mathrm{2}{i}\left(−\frac{\mathrm{1}}{\mathrm{2}}{sin}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}\right) \\ $$$$\frac{{dy}}{{dx}}={i}\left({sin}\frac{{x}}{\mathrm{2}}−{cos}\frac{{x}}{\mathrm{2}}\right) \\ $$$$\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} =−\mathrm{1}\left(\mathrm{1}−{sinx}\right) \\ $$$$\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} =\left(−\mathrm{1}+{sinx}\right) \\ $$$${is}\:{it}\:{right}\:{or}\:{wrong}\:{pls}\:{check}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by abdo.msup.com last updated on 06/Sep/18

its clear that  y is a complex function  you answer is correct you have verifying  this.

$${its}\:{clear}\:{that}\:\:{y}\:{is}\:{a}\:{complex}\:{function} \\ $$$${you}\:{answer}\:{is}\:{correct}\:{you}\:{have}\:{verifying} \\ $$$${this}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 06/Sep/18

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com