Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 42285 by maxmathsup by imad last updated on 22/Aug/18

let  S_p =Σ_(n=0) ^∞   cos(((nπ)/p))  and  W_p  =Σ_(n=0) ^∞  sin(((nπ)/p)) with p natural integr not0  1) find a simple form of S_p  and W_p   2) find the value of Σ_(n=0) ^∞  cos(((nπ)/3)) and Σ_(n=0) ^∞  sin(((nπ)/3))  3) find the value of  Σ_(n=0) ^∞  cos(((nπ)/5)) and Σ_(n=0) ^∞  sin(((nπ)/5))  4) calculate  A =Σ_(n=0) ^∞  cos^2 (((nπ)/3)) and B =Σ_(n=0) ^∞  sin^2 (((nπ)/3)) .

$${let}\:\:{S}_{{p}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{cos}\left(\frac{{n}\pi}{{p}}\right)\:\:{and}\:\:{W}_{{p}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{{p}}\right)\:{with}\:{p}\:{natural}\:{integr}\:{not}\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{S}_{{p}} \:{and}\:{W}_{{p}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}\left(\frac{{n}\pi}{\mathrm{3}}\right)\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{\mathrm{3}}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}\left(\frac{{n}\pi}{\mathrm{5}}\right)\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{\mathrm{5}}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\:{A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}^{\mathrm{2}} \left(\frac{{n}\pi}{\mathrm{3}}\right)\:{and}\:{B}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}^{\mathrm{2}} \left(\frac{{n}\pi}{\mathrm{3}}\right)\:. \\ $$

Commented by maxmathsup by imad last updated on 23/Aug/18

1) we have S_p  +iW_p =Σ_(n=0) ^∞  e^(i((nπ)/p))  =Σ_(n=0) ^∞  (e^((iπ)/p) )^n   =(1/(1−e^(i(π/p)) ))  =(1/(1−cos((π/p))−isin((π/p)))) =(1/(2sin^2 ((π/(2p))) −2isin((π/(2p)))cos((π/(2p)))))  = (1/(−2isin((π/(2p)))(cos((π/(2p)))+isin((π/(2p))))))  =(i/(2 sin((π/(2p))))) e^(−((iπ)/(2p)))   =(i/(2sin((π/(2p))))){cos((π/(2p)))−i sin((π/(2p)))} =(i/2)cotan((π/(2p))) +(1/2) ⇒  S_p =(1/2)  and W_p =(1/2)cotan((π/(2p)))  2) Σ_(n=0) ^∞  cos(((nπ)/3)) =S_3 =(1/2)  and  Σ_(n=0) ^∞  sin(((nπ)/3)) =W_3 =(1/2)cotan((π/6))  W_3 =(1/2) (√3)=((√3)/2)  3) Σ_(n=0) ^∞  cos(((nπ)/5)) =S_5 =(1/2)  and  Σ_(n=0) ^∞  sin(((nπ)/5)) =W_5 =(1/2)cotan((π/(10)))

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{S}_{{p}} \:+{iW}_{{p}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{{i}\frac{{n}\pi}{{p}}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({e}^{\frac{{i}\pi}{{p}}} \right)^{{n}} \:\:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{{i}\frac{\pi}{{p}}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−{cos}\left(\frac{\pi}{{p}}\right)−{isin}\left(\frac{\pi}{{p}}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}{p}}\right)\:−\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{2}{p}}\right){cos}\left(\frac{\pi}{\mathrm{2}{p}}\right)} \\ $$$$=\:\frac{\mathrm{1}}{−\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{2}{p}}\right)\left({cos}\left(\frac{\pi}{\mathrm{2}{p}}\right)+{isin}\left(\frac{\pi}{\mathrm{2}{p}}\right)\right)}\:\:=\frac{{i}}{\mathrm{2}\:{sin}\left(\frac{\pi}{\mathrm{2}{p}}\right)}\:{e}^{−\frac{{i}\pi}{\mathrm{2}{p}}} \\ $$$$=\frac{{i}}{\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{2}{p}}\right)}\left\{{cos}\left(\frac{\pi}{\mathrm{2}{p}}\right)−{i}\:{sin}\left(\frac{\pi}{\mathrm{2}{p}}\right)\right\}\:=\frac{{i}}{\mathrm{2}}{cotan}\left(\frac{\pi}{\mathrm{2}{p}}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${S}_{{p}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:{and}\:{W}_{{p}} =\frac{\mathrm{1}}{\mathrm{2}}{cotan}\left(\frac{\pi}{\mathrm{2}{p}}\right) \\ $$$$\left.\mathrm{2}\right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}\left(\frac{{n}\pi}{\mathrm{3}}\right)\:={S}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:{and}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{\mathrm{3}}\right)\:={W}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}{cotan}\left(\frac{\pi}{\mathrm{6}}\right) \\ $$$${W}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\:\sqrt{\mathrm{3}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}\left(\frac{{n}\pi}{\mathrm{5}}\right)\:={S}_{\mathrm{5}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:{and}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\frac{{n}\pi}{\mathrm{5}}\right)\:={W}_{\mathrm{5}} =\frac{\mathrm{1}}{\mathrm{2}}{cotan}\left(\frac{\pi}{\mathrm{10}}\right) \\ $$

Commented by maxmathsup by imad last updated on 23/Aug/18

4) the Q is claculate A_n =Σ_(k=0) ^n  cos^2 (((kπ)/3)) and B_n =Σ_(k=0) ^n  sin^2 (((kπ)/3)).

$$\left.\mathrm{4}\right)\:{the}\:{Q}\:{is}\:{claculate}\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{cos}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{3}}\right)\:{and}\:{B}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{3}}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com