Question and Answers Forum

All Questions      Topic List

Magnetic Effect Questions

Previous in All Question      Next in All Question      

Previous in Magnetic Effect      Next in Magnetic Effect      

Question Number 40519 by rahul 19 last updated on 23/Jul/18

Commented by rahul 19 last updated on 23/Jul/18

If the resistance of larger loop is R,  find current in it as a function of time?

$$\mathrm{If}\:\mathrm{the}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{larger}\:\mathrm{loop}\:\mathrm{is}\:\mathrm{R}, \\ $$$$\mathrm{find}\:\mathrm{current}\:\mathrm{in}\:\mathrm{it}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}? \\ $$

Answered by ajfour last updated on 23/Jul/18

M_(ab) =M_(ba)   let current I flow in larger loop;  magnetic flux through smaller  loop is then  φ=((μ_0 I)/(2b))(πa^2 )=M_(ab) I  ⇒    M_(ba) =((μ_0 πa^2 )/(2b))  Now due to current in smaller  loop i=2t  induced emf in larger  loop is   V_b =M_(ba)  (di/dt) = 2M_(ba)   hence    V_b =((μ_0 πa^2 )/(2b))×2  current in larger loop is then       =(V_b /R) = ((μ_0 πa^2 )/(bR)) .

$${M}_{{ab}} ={M}_{{ba}} \\ $$$${let}\:{current}\:{I}\:{flow}\:{in}\:{larger}\:{loop}; \\ $$$${magnetic}\:{flux}\:{through}\:{smaller} \\ $$$${loop}\:{is}\:{then}\:\:\phi=\frac{\mu_{\mathrm{0}} {I}}{\mathrm{2}{b}}\left(\pi{a}^{\mathrm{2}} \right)={M}_{{ab}} {I} \\ $$$$\Rightarrow\:\:\:\:{M}_{{ba}} =\frac{\mu_{\mathrm{0}} \pi{a}^{\mathrm{2}} }{\mathrm{2}{b}} \\ $$$${Now}\:{due}\:{to}\:{current}\:{in}\:{smaller} \\ $$$${loop}\:{i}=\mathrm{2}{t}\:\:{induced}\:{emf}\:{in}\:{larger} \\ $$$${loop}\:{is}\:\:\:{V}_{{b}} ={M}_{{ba}} \:\frac{{di}}{{dt}}\:=\:\mathrm{2}{M}_{{ba}} \\ $$$${hence}\:\:\:\:{V}_{{b}} =\frac{\mu_{\mathrm{0}} \pi{a}^{\mathrm{2}} }{\mathrm{2}{b}}×\mathrm{2} \\ $$$${current}\:{in}\:{larger}\:{loop}\:{is}\:{then} \\ $$$$\:\:\:\:\:=\frac{{V}_{{b}} }{{R}}\:=\:\frac{\mu_{\mathrm{0}} \pi{a}^{\mathrm{2}} }{{bR}}\:. \\ $$

Commented by rahul 19 last updated on 23/Jul/18

thank you both sirs ������

Commented by rahul 19 last updated on 23/Jul/18

This result shows current independent  of time in larger loop. But if we take some instant  say t=0 , then why  will current flow ?  ?And what about t=∞ ?.....

$$\mathrm{This}\:\mathrm{result}\:\mathrm{shows}\:\mathrm{current}\:\mathrm{independent} \\ $$$$\mathrm{of}\:\mathrm{time}\:\mathrm{in}\:\mathrm{larger}\:\mathrm{loop}.\:\mathrm{But}\:\mathrm{if}\:\mathrm{we}\:\mathrm{take}\:\mathrm{some}\:\mathrm{instant} \\ $$$$\mathrm{say}\:\mathrm{t}=\mathrm{0}\:,\:\mathrm{then}\:{why}\:\:\mathrm{will}\:\mathrm{current}\:\mathrm{flow}\:? \\ $$$$?\mathrm{And}\:\mathrm{what}\:\mathrm{about}\:\mathrm{t}=\infty\:?..... \\ $$

Commented by ajfour last updated on 23/Jul/18

induced emf Will depend on rate  of change of current in neighbouring  coil.  what if velocity be v=2t  the force at t=0  and t→∞ will  then be =m((d(2v))/dt)=2m.  dont be surprised!

$${induced}\:{emf}\:{Will}\:{depend}\:{on}\:{rate} \\ $$$${of}\:{change}\:{of}\:{current}\:{in}\:{neighbouring} \\ $$$${coil}. \\ $$$${what}\:{if}\:{velocity}\:{be}\:{v}=\mathrm{2}{t} \\ $$$${the}\:{force}\:{at}\:{t}=\mathrm{0}\:\:{and}\:{t}\rightarrow\infty\:{will} \\ $$$${then}\:{be}\:={m}\frac{{d}\left(\mathrm{2}{v}\right)}{{dt}}=\mathrm{2}{m}. \\ $$$${dont}\:{be}\:{surprised}! \\ $$

Commented by rahul 19 last updated on 23/Jul/18

Current in smaller loop at t=0 is 0.  and there is also no battery connected to larger loop then  what is the source of current in larger loop  at t=0 ?

$$\mathrm{Current}\:\mathrm{in}\:\mathrm{smaller}\:\mathrm{loop}\:\mathrm{at}\:\mathrm{t}=\mathrm{0}\:\mathrm{is}\:\mathrm{0}. \\ $$$$\mathrm{and}\:\mathrm{there}\:\mathrm{is}\:\mathrm{also}\:\mathrm{no}\:\mathrm{battery}\:\mathrm{connected}\:\mathrm{to}\:\mathrm{larger}\:\mathrm{loop}\:\mathrm{then} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{source}\:\mathrm{of}\:\mathrm{current}\:\mathrm{in}\:\mathrm{larger}\:\mathrm{loop} \\ $$$$\mathrm{at}\:\mathrm{t}=\mathrm{0}\:? \\ $$

Commented by ajfour last updated on 23/Jul/18

rate of change of magnetic flux  owing to rate of change of current  in smaller loop; which is still not  zero.

$${rate}\:{of}\:{change}\:{of}\:{magnetic}\:{flux} \\ $$$${owing}\:{to}\:{rate}\:{of}\:{change}\:{of}\:{current} \\ $$$${in}\:{smaller}\:{loop};\:{which}\:{is}\:{still}\:{not} \\ $$$${zero}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com