Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40505 by prof Abdo imad last updated on 23/Jul/18

calcilate ∫_(π/6) ^(π/4)    ((sin(x))/(cos(x) +cos(2x)))dx

$${calcilate}\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{sin}\left({x}\right)}{{cos}\left({x}\right)\:+{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Answered by MJS last updated on 23/Jul/18

cos 2x=2cos^2  x −1  ∫((sin x)/(2cos^2  x +cos x −1))dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫(dt/(2t^2 +t−1))=−∫(dt/((2t−1)(t+1)))=  =(1/3)∫(dt/(t+1))−(2/3)∫(dt/(2t−1))=  =(1/3)ln(t+1)−(1/3)ln(2t−1)=(1/3)ln ((t+1)/(2t−1))=  =(1/3)ln∣((cos x +1)/(2cos x −1))∣+C  ∫_(π/6) ^(π/4) ((sin x)/(cos x +cos 2x))dx=(1/3)(ln ((4+3(√2))/2) −ln ((5+3(√3))/4))≈.160153

$$\mathrm{cos}\:\mathrm{2}{x}=\mathrm{2cos}^{\mathrm{2}} \:{x}\:−\mathrm{1} \\ $$$$\int\frac{\mathrm{sin}\:{x}}{\mathrm{2cos}^{\mathrm{2}} \:{x}\:+\mathrm{cos}\:{x}\:−\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{cos}\:{x}\:\rightarrow\:{dx}=−\frac{{dt}}{\mathrm{sin}\:{x}}\right] \\ $$$$=−\int\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} +{t}−\mathrm{1}}=−\int\frac{{dt}}{\left(\mathrm{2}{t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{dt}}{{t}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{dt}}{\mathrm{2}{t}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\left({t}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\left(\mathrm{2}{t}−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\frac{{t}+\mathrm{1}}{\mathrm{2}{t}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\mid\frac{\mathrm{cos}\:{x}\:+\mathrm{1}}{\mathrm{2cos}\:{x}\:−\mathrm{1}}\mid+{C} \\ $$$$\underset{\frac{\pi}{\mathrm{6}}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}\:+\mathrm{cos}\:\mathrm{2}{x}}{dx}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{ln}\:\frac{\mathrm{4}+\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\mathrm{ln}\:\frac{\mathrm{5}+\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\right)\approx.\mathrm{160153} \\ $$

Commented by math khazana by abdo last updated on 23/Jul/18

thank you sir Mjs.

$${thank}\:{you}\:{sir}\:{Mjs}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com