Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 124474 by sogol last updated on 03/Dec/20

((4/(−6+i(√5))))^4 =???    polar????

$$\left(\frac{\mathrm{4}}{−\mathrm{6}+{i}\sqrt{\mathrm{5}}}\right)^{\mathrm{4}} =??? \\ $$$$ \\ $$$${polar}???? \\ $$

Commented by MJS_new last updated on 03/Dec/20

no need to convert to polar  (a+bi)^4 =a^4 −6a^2 b^2 +b^4 +4xy(x^2 −y^2 )i  (1/(a+bi))=((a−bi)/(a^2 +b^2 ))  ((4/(−6+i(√5))))^4 =((256)/(241−744(√5)i))=  =((61696)/(2825761))+((190464(√5))/(2825761))i  it′s not easier in polar

$$\mathrm{no}\:\mathrm{need}\:\mathrm{to}\:\mathrm{convert}\:\mathrm{to}\:\mathrm{polar} \\ $$$$\left({a}+{b}\mathrm{i}\right)^{\mathrm{4}} ={a}^{\mathrm{4}} −\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} +\mathrm{4}{xy}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\mathrm{i} \\ $$$$\frac{\mathrm{1}}{{a}+{b}\mathrm{i}}=\frac{{a}−{b}\mathrm{i}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\left(\frac{\mathrm{4}}{−\mathrm{6}+\mathrm{i}\sqrt{\mathrm{5}}}\right)^{\mathrm{4}} =\frac{\mathrm{256}}{\mathrm{241}−\mathrm{744}\sqrt{\mathrm{5}}\mathrm{i}}= \\ $$$$=\frac{\mathrm{61696}}{\mathrm{2825761}}+\frac{\mathrm{190464}\sqrt{\mathrm{5}}}{\mathrm{2825761}}\mathrm{i} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{easier}\:\mathrm{in}\:\mathrm{polar} \\ $$

Answered by mathmax by abdo last updated on 03/Dec/20

we have  ∣−6+i(√5)∣=(√(36+5))=(√(41)) ⇒−6+i(√5)=(√(41)) e^(−iarctan(((√5)/6)))  ⇒  ((4/(−6+i(√5))))^4  =(4^4 /(((√(41)))^4  e^(−4iarctan(((√5)/6))) )) =(4^4 /(((√(41)))^4 )) e^(4i arctan(((√5)/6)))

$$\mathrm{we}\:\mathrm{have}\:\:\mid−\mathrm{6}+\mathrm{i}\sqrt{\mathrm{5}}\mid=\sqrt{\mathrm{36}+\mathrm{5}}=\sqrt{\mathrm{41}}\:\Rightarrow−\mathrm{6}+\mathrm{i}\sqrt{\mathrm{5}}=\sqrt{\mathrm{41}}\:\mathrm{e}^{−\mathrm{iarctan}\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{6}}\right)} \:\Rightarrow \\ $$$$\left(\frac{\mathrm{4}}{−\mathrm{6}+\mathrm{i}\sqrt{\mathrm{5}}}\right)^{\mathrm{4}} \:=\frac{\mathrm{4}^{\mathrm{4}} }{\left(\sqrt{\mathrm{41}}\right)^{\mathrm{4}} \:\mathrm{e}^{−\mathrm{4iarctan}\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{6}}\right)} }\:=\frac{\mathrm{4}^{\mathrm{4}} }{\left(\sqrt{\mathrm{41}}\right)^{\mathrm{4}} }\:\mathrm{e}^{\mathrm{4i}\:\mathrm{arctan}\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{6}}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com