Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78762 by ajfour last updated on 20/Jan/20

3acr^2 (1−r)+3apr(1−r)(pa+qb)  +3bqr(1−r)(pa+qb)     = 3(1−r)^2 (pa+qb)^2 +r^2 b^2   Find p, q, r such that the equation  is satisfied for general any  values of a,b,c.

$$\mathrm{3}{acr}^{\mathrm{2}} \left(\mathrm{1}−{r}\right)+\mathrm{3}{apr}\left(\mathrm{1}−{r}\right)\left({pa}+{qb}\right) \\ $$$$+\mathrm{3}{bqr}\left(\mathrm{1}−{r}\right)\left({pa}+{qb}\right) \\ $$$$\:\:\:=\:\mathrm{3}\left(\mathrm{1}−{r}\right)^{\mathrm{2}} \left({pa}+{qb}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$${Find}\:{p},\:{q},\:{r}\:{such}\:{that}\:{the}\:{equation} \\ $$$${is}\:{satisfied}\:{for}\:{general}\:{any} \\ $$$${values}\:{of}\:{a},{b},{c}.\: \\ $$

Commented by ajfour last updated on 20/Jan/20

real values are required, any  method to this ?

$${real}\:{values}\:{are}\:{required},\:{any} \\ $$$${method}\:{to}\:{this}\:? \\ $$

Answered by mr W last updated on 20/Jan/20

3r^2 (1−r)ac+3p^2 r(1−r)a^2 +6pqr(1−r)ab+3q^2 r(1−r)b^2   =3p^2 (1−r)^2 a^2 +[3q^2 (1−r)^2 −r^2 ]b^2 +6pq(1−r)^2 ab  3r^2 (1−r)=0 ⇒r=0 or 1  3p^2 r(1−r)=3p^2 (1−r)^2 ⇒r=0,p=0 or r=1,p=any  3q^2 r(1−r)=3q^2 (1−r)^2 −r^2  ⇒r=0,q=0 or r=1,q=impossible  6pqr(1−r)=6pq(1−r)^2 ⇒r=p=q=0    ⇒only possibility is p=q=r=0.

$$\mathrm{3}{r}^{\mathrm{2}} \left(\mathrm{1}−{r}\right){ac}+\mathrm{3}{p}^{\mathrm{2}} {r}\left(\mathrm{1}−{r}\right){a}^{\mathrm{2}} +\mathrm{6}{pqr}\left(\mathrm{1}−{r}\right){ab}+\mathrm{3}{q}^{\mathrm{2}} {r}\left(\mathrm{1}−{r}\right){b}^{\mathrm{2}} \\ $$$$=\mathrm{3}{p}^{\mathrm{2}} \left(\mathrm{1}−{r}\right)^{\mathrm{2}} {a}^{\mathrm{2}} +\left[\mathrm{3}{q}^{\mathrm{2}} \left(\mathrm{1}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \right]{b}^{\mathrm{2}} +\mathrm{6}{pq}\left(\mathrm{1}−{r}\right)^{\mathrm{2}} {ab} \\ $$$$\mathrm{3}{r}^{\mathrm{2}} \left(\mathrm{1}−{r}\right)=\mathrm{0}\:\Rightarrow{r}=\mathrm{0}\:{or}\:\mathrm{1} \\ $$$$\mathrm{3}{p}^{\mathrm{2}} {r}\left(\mathrm{1}−{r}\right)=\mathrm{3}{p}^{\mathrm{2}} \left(\mathrm{1}−{r}\right)^{\mathrm{2}} \Rightarrow{r}=\mathrm{0},{p}=\mathrm{0}\:{or}\:{r}=\mathrm{1},{p}={any} \\ $$$$\mathrm{3}{q}^{\mathrm{2}} {r}\left(\mathrm{1}−{r}\right)=\mathrm{3}{q}^{\mathrm{2}} \left(\mathrm{1}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \:\Rightarrow{r}=\mathrm{0},{q}=\mathrm{0}\:{or}\:{r}=\mathrm{1},{q}={impossible} \\ $$$$\mathrm{6}{pqr}\left(\mathrm{1}−{r}\right)=\mathrm{6}{pq}\left(\mathrm{1}−{r}\right)^{\mathrm{2}} \Rightarrow{r}={p}={q}=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{only}\:{possibility}\:{is}\:{p}={q}={r}=\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com