Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 39144 by Rio Mike last updated on 03/Jul/18

f(x) = 3x^3  − 2x + k has   factor (x − 1)    find the value of k.  with these value   evaluate  a) (d/(dx ))(f(x)_ )  b) ∫_5 ^2 (f(x))

$${f}\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}\:+\:{k}\:{has}\: \\ $$$${factor}\:\left({x}\:−\:\mathrm{1}\right)\:\: \\ $$$${find}\:{the}\:{value}\:{of}\:{k}. \\ $$$${with}\:{these}\:{value}\: \\ $$$${evaluate} \\ $$$$\left.{a}\right)\:\frac{{d}}{{dx}\:}\left({f}\left({x}\right)_{} \right) \\ $$$$\left.{b}\right)\:\int_{\mathrm{5}} ^{\mathrm{2}} \left({f}\left({x}\right)\right) \\ $$

Answered by MJS last updated on 03/Jul/18

(a) (d/dx)[f(x)]=f′(x)=9x^2 −2  (x−1)(x−α)(x−β)−(x^3 −(2/3)x+(k/3))=0  α+β+1=0  α+αβ+β+(2/3)=0  αβ+(k/3)=0    α=−β−1  β^2 +β+(1/3)=0  β^2 +β−(k/3)=0  ⇒ k=−1  f(x)=3x^3 −2x−1    (b) ∫_5 ^2 (3x^3 −2x−1)dx=[(3/4)x^4 −x^2 −x]_5 ^2 =       =6−((1755)/4)=−((1731)/4)

$$\left({a}\right)\:\frac{{d}}{{dx}}\left[{f}\left({x}\right)\right]={f}'\left({x}\right)=\mathrm{9}{x}^{\mathrm{2}} −\mathrm{2} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}−\alpha\right)\left({x}−\beta\right)−\left({x}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{{k}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$$\alpha+\beta+\mathrm{1}=\mathrm{0} \\ $$$$\alpha+\alpha\beta+\beta+\frac{\mathrm{2}}{\mathrm{3}}=\mathrm{0} \\ $$$$\alpha\beta+\frac{{k}}{\mathrm{3}}=\mathrm{0} \\ $$$$ \\ $$$$\alpha=−\beta−\mathrm{1} \\ $$$$\beta^{\mathrm{2}} +\beta+\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{0} \\ $$$$\beta^{\mathrm{2}} +\beta−\frac{{k}}{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\:{k}=−\mathrm{1} \\ $$$${f}\left({x}\right)=\mathrm{3}{x}^{\mathrm{3}} −\mathrm{2}{x}−\mathrm{1} \\ $$$$ \\ $$$$\left({b}\right)\:\underset{\mathrm{5}} {\overset{\mathrm{2}} {\int}}\left(\mathrm{3}{x}^{\mathrm{3}} −\mathrm{2}{x}−\mathrm{1}\right){dx}=\left[\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{4}} −{x}^{\mathrm{2}} −{x}\right]_{\mathrm{5}} ^{\mathrm{2}} = \\ $$$$\:\:\:\:\:=\mathrm{6}−\frac{\mathrm{1755}}{\mathrm{4}}=−\frac{\mathrm{1731}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com