Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 37964 by naka3546 last updated on 20/Jun/18

Answered by gunawan last updated on 20/Jun/18

put   (a+b)≥2c  (((a+b)(a−b))/c)≥2(a−b)  ((a^2 −b^2 )/c)≥2a−2b   ..(i)  c−b≤0  2a≥b+c   then:  (c−b)(b+c)≥2a(c−b)  ((c^2 −b^2 )/a)≥2c−2b...(ii)  a+c≥b  (a+c)(a−c)≥b(a−c)  ((a^2 −c^2 )/b)≥a−c  ...(iii)  add (i),(ii), and (iii) so  ((a^2 −b^2 )/c)+((c^2 −b^2 )/a)+((a^2 −c^2 )/b)≥(2a+a)+(−2b−2b)+(2c−c)  ((a^2 −b^2 )/c)+((c^2 −b^2 )/a)+((a^2 −c^2 )/b)≥3a−4b+c

$$\mathrm{put}\: \\ $$$$\left({a}+{b}\right)\geqslant\mathrm{2}{c} \\ $$$$\frac{\left({a}+{b}\right)\left({a}−{b}\right)}{{c}}\geqslant\mathrm{2}\left({a}−{b}\right) \\ $$$$\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{c}}\geqslant\mathrm{2}{a}−\mathrm{2}{b}\:\:\:..\left({i}\right) \\ $$$${c}−{b}\leqslant\mathrm{0} \\ $$$$\mathrm{2}{a}\geqslant{b}+{c}\: \\ $$$$\mathrm{then}: \\ $$$$\left({c}−{b}\right)\left({b}+{c}\right)\geqslant\mathrm{2}{a}\left({c}−{b}\right) \\ $$$$\frac{{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}}\geqslant\mathrm{2}{c}−\mathrm{2}{b}...\left({ii}\right) \\ $$$${a}+{c}\geqslant{b} \\ $$$$\left({a}+{c}\right)\left({a}−{c}\right)\geqslant{b}\left({a}−{c}\right) \\ $$$$\frac{{a}^{\mathrm{2}} −{c}^{\mathrm{2}} }{{b}}\geqslant{a}−{c}\:\:...\left({iii}\right) \\ $$$${add}\:\left({i}\right),\left({ii}\right),\:\mathrm{and}\:\left({iii}\right)\:\mathrm{so} \\ $$$$\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{c}}+\frac{{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}}+\frac{{a}^{\mathrm{2}} −{c}^{\mathrm{2}} }{{b}}\geqslant\left(\mathrm{2}{a}+{a}\right)+\left(−\mathrm{2}{b}−\mathrm{2}{b}\right)+\left(\mathrm{2}{c}−{c}\right) \\ $$$$\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{c}}+\frac{{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}}+\frac{{a}^{\mathrm{2}} −{c}^{\mathrm{2}} }{{b}}\geqslant\mathrm{3}{a}−\mathrm{4}{b}+{c} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 20/Jun/18

excellent...

$${excellent}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com