Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 37871 by kunal1234523 last updated on 18/Jun/18

A regular pyramid has for its base polygon  of n sides, and each slant face consist of an   isosceles triangle of vertical angle 2α. If the  slant faces are each inclined at angle β to   the base , and at an angle 2γ to one another  show that  cosβ = tan α cot(π/n) , and sinγ = sec α cos(π/n)

$$\mathrm{A}\:\mathrm{regular}\:\mathrm{pyramid}\:\mathrm{has}\:\mathrm{for}\:\mathrm{its}\:\mathrm{base}\:\mathrm{polygon} \\ $$$$\mathrm{of}\:{n}\:\mathrm{sides},\:\mathrm{and}\:\mathrm{each}\:\mathrm{slant}\:\mathrm{face}\:\mathrm{consist}\:\mathrm{of}\:\mathrm{an}\: \\ $$$$\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{vertical}\:\mathrm{angle}\:\mathrm{2}\alpha.\:\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{slant}\:\mathrm{faces}\:\mathrm{are}\:\mathrm{each}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{angle}\:\beta\:\mathrm{to}\: \\ $$$$\mathrm{the}\:\mathrm{base}\:,\:\mathrm{and}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{2}\gamma\:\mathrm{to}\:\mathrm{one}\:\mathrm{another} \\ $$$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{cos}\beta\:=\:\mathrm{tan}\:\alpha\:\mathrm{cot}\frac{\pi}{\mathrm{n}}\:,\:\mathrm{and}\:\mathrm{sin}\gamma\:=\:\mathrm{sec}\:\alpha\:\mathrm{cos}\frac{\pi}{\mathrm{n}} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18

Commented by ajfour last updated on 18/Jun/18

cos β = tan α cot (π/n)   (i can prove)  but     sin γ = cos (π/n)     (i think).

$$\mathrm{cos}\:\beta\:=\:\mathrm{tan}\:\alpha\:\mathrm{cot}\:\frac{\pi}{{n}}\:\:\:\left({i}\:{can}\:{prove}\right) \\ $$$${but}\:\:\:\:\:\mathrm{sin}\:\gamma\:=\:\mathrm{cos}\:\frac{\pi}{{n}}\:\:\:\:\:\left({i}\:{think}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com