Question Number 37738 by kunal1234523 last updated on 17/Jun/18 | ||
$$\mathrm{given}\:{a}^{\mathrm{2}} <\mathrm{1} \\ $$ $$\mathrm{now} \\ $$ $${a}<\sqrt{\mathrm{1}} \\ $$ $$\mathrm{or}\:{a}<\pm\mathrm{1} \\ $$ $$\therefore\:{a}<\mathrm{1}\:\mathrm{and}\:{a}<−\mathrm{1}\:\:\:\:\mathrm{but}\:\mathrm{but}\:\mathrm{its}\:\mathrm{false}\:\mathrm{we}\:\mathrm{know} \\ $$ $${if}\:\mathrm{a}^{\mathrm{2}} <\mathrm{1}\:\mathrm{so}\:−\mathrm{1}<{a}<\mathrm{1}\: \\ $$ $${so}\:{my}\:{question}\:{is}\:{why}\:{this}\:{is}\:{happening}\:{at}\:{all}. \\ $$ | ||
Commented byprakash jain last updated on 17/Jun/18 | ||
$$\sqrt{{a}^{\mathrm{2}} }=\mid{a}\mid\: \\ $$ $$\sqrt{{a}^{\mathrm{2}} }\:\neq{a} \\ $$ | ||
Commented byMrW3 last updated on 17/Jun/18 | ||
$${from}\:{a}^{\mathrm{2}} <\mathrm{1}\:{you}\:{can}\:{get} \\ $$ $${a}<\sqrt{\mathrm{1}}\:\:\:\:\left({to}\:{be}\:{axact},\:{it}\:{should}\:{be}\:\mid{a}\mid<\sqrt{\mathrm{1}}\right) \\ $$ $${but}\:{you}\:{can}\:{not}\:{get} \\ $$ $${a}<\pm\mathrm{1}\:!\:\:\left({from}\:\mid{a}\mid<\mathrm{1},\:{you}\:{should}\:{get}\:−\mathrm{1}<{a}<\mathrm{1}\right) \\ $$ | ||
Commented bykunal1234523 last updated on 17/Jun/18 | ||
$$\mathrm{ohh}!\:\mathrm{thank}\:\mathrm{you}\:\mathrm{actually}\:\mathrm{i}\:\mathrm{had}\:\mathrm{not}\:\mathrm{started}\:\mathrm{learning} \\ $$ $$\mathrm{about}\:\mathrm{absolute}\:\mathrm{value}\: \\ $$ | ||
Commented byRasheed.Sindhi last updated on 17/Jun/18 | ||
$${a}^{\mathrm{2}} <\mathrm{1}\Rightarrow{a}^{\mathrm{2}} −\mathrm{1}<\mathrm{0}\Rightarrow\left({a}−\mathrm{1}\right)\left({a}+\mathrm{1}\right)<\mathrm{0} \\ $$ $$\Rightarrow\left({a}−\mathrm{1}<\mathrm{0}\:\wedge\:{a}+\mathrm{1}>\mathrm{0}\right)\:\mid\:\left({a}−\mathrm{1}>\mathrm{0}\:\wedge\:{a}+\mathrm{1}<\mathrm{0}\right) \\ $$ $$\Rightarrow\left({a}<\mathrm{1}\:\wedge\:{a}>−\mathrm{1}\right)\:\mid\:\left({a}>\mathrm{1}\:\wedge\:{a}<−\mathrm{1}\right) \\ $$ $$\Rightarrow\:\:−\mathrm{1}<{a}<\mathrm{1}\:\:\:\mid\:\:\:\left({a}>\mathrm{1}\:\wedge\:{a}<−\mathrm{1}\right)\left(\mathrm{Impossible}\right) \\ $$ $$\Rightarrow\:\:−\mathrm{1}<{a}<\mathrm{1}\: \\ $$ | ||