Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 36947 by maxmathsup by imad last updated on 07/Jun/18

integrate the d.equation  xy^′  +y = ((2x)/(√(1−x^4 ))) .

$${integrate}\:{the}\:{d}.{equation}\:\:{xy}^{'} \:+{y}\:=\:\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:. \\ $$

Commented by abdo.msup.com last updated on 07/Jun/18

h.e→ xy^′  +y =0 ⇒(y^′ /y) =−(1/x) ⇒  ln∣y∣ =−ln∣x∣ +c ⇒y = (k/(∣x∣))  if 0<x<1  y =(k/x)  mvc method give  y^′  = (k^′ /x) −(k/x^2 )  (e) ⇔ k^′  −(k/x) +(k/x)  =((2x)/(√(1−x^4 ))) ⇒  k = ∫  ((2x)/(√(1−x^4 )))dx  +λ  changement x^2 =t  give 2xdx =dt  and  k(x)=∫  (dt/(√(1−t^2 )))  =arcsin(t) +c =arcsin(x^2 ) +c ⇒  y(x)=(1/x){ arcsin(x^2 ) +c}   y(x)= ((arcsin(x^2 ))/x) +(c/x) .

$${h}.{e}\rightarrow\:{xy}^{'} \:+{y}\:=\mathrm{0}\:\Rightarrow\frac{{y}^{'} }{{y}}\:=−\frac{\mathrm{1}}{{x}}\:\Rightarrow \\ $$$${ln}\mid{y}\mid\:=−{ln}\mid{x}\mid\:+{c}\:\Rightarrow{y}\:=\:\frac{{k}}{\mid{x}\mid} \\ $$$${if}\:\mathrm{0}<{x}<\mathrm{1}\:\:{y}\:=\frac{{k}}{{x}}\:\:{mvc}\:{method}\:{give} \\ $$$${y}^{'} \:=\:\frac{{k}^{'} }{{x}}\:−\frac{{k}}{{x}^{\mathrm{2}} } \\ $$$$\left({e}\right)\:\Leftrightarrow\:{k}^{'} \:−\frac{{k}}{{x}}\:+\frac{{k}}{{x}}\:\:=\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:\Rightarrow \\ $$$${k}\:=\:\int\:\:\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{dx}\:\:+\lambda\:\:{changement}\:{x}^{\mathrm{2}} ={t} \\ $$$${give}\:\mathrm{2}{xdx}\:={dt}\:\:{and}\:\:{k}\left({x}\right)=\int\:\:\frac{{dt}}{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$$$={arcsin}\left({t}\right)\:+{c}\:={arcsin}\left({x}^{\mathrm{2}} \right)\:+{c}\:\Rightarrow \\ $$$${y}\left({x}\right)=\frac{\mathrm{1}}{{x}}\left\{\:{arcsin}\left({x}^{\mathrm{2}} \right)\:+{c}\right\}\: \\ $$$${y}\left({x}\right)=\:\frac{{arcsin}\left({x}^{\mathrm{2}} \right)}{{x}}\:+\frac{{c}}{{x}}\:. \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18

x(dy/dx)+y=((2x)/(√(1−x^4 )))  xdy+ydx=((2x)/(√(1−x^4 )))dx  d(xy)=((d(x^2 ))/(√(1−(x^2 )^2 )))  ∫d(xy)=∫((d(x^2 ))/(√(1−(x^2 )^2 )))  xy=sin^(−1) (x^2 )+c

$${x}\frac{{dy}}{{dx}}+{y}=\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }} \\ $$$${xdy}+{ydx}=\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{dx} \\ $$$${d}\left({xy}\right)=\frac{{d}\left({x}^{\mathrm{2}} \right)}{\sqrt{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$\int{d}\left({xy}\right)=\int\frac{{d}\left({x}^{\mathrm{2}} \right)}{\sqrt{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$${xy}={sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)+{c} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com