Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36597 by rahul 19 last updated on 03/Jun/18

∫(dx/(x^(2/3) (1+x^(2/3) ))) = ?

$$\int\frac{\mathrm{d}{x}}{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}+{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)}\:=\:? \\ $$

Commented by rahul 19 last updated on 03/Jun/18

I tried by taking x^(2/3)  common from  the bracket of denominator and   then (x^((−2)/3) +1)=t but couldn′t reach till  end. Can someone try like this?

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{by}\:\mathrm{taking}\:{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:{common}\:{from} \\ $$$${the}\:{bracket}\:{of}\:{denominator}\:{and}\: \\ $$$${then}\:\left({x}^{\frac{−\mathrm{2}}{\mathrm{3}}} +\mathrm{1}\right)={t}\:{but}\:{couldn}'\mathrm{t}\:\mathrm{reach}\:\mathrm{till} \\ $$$$\mathrm{end}.\:\mathrm{Can}\:\mathrm{someone}\:\mathrm{try}\:\mathrm{like}\:\mathrm{this}? \\ $$

Commented by abdo mathsup 649 cc last updated on 03/Jun/18

changement x^(2/3)   =t give x=t^(3/2)   I  = ∫   (1/(t( 1+t))) (3/2) t^(1/2)   dt  = (3/2) ∫   ((√t)/(t(1+t)))dt  and changement (√t)  =x give  I  = (3/2) ∫   (x/(x^2 ( 1+x^2 ))) 2x dx  = 3 ∫     (dx/(1+x^2 )) = 3 arctanx +c  =3 arctan(t(√t)) +c .

$${changement}\:{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:\:={t}\:{give}\:{x}={t}^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${I}\:\:=\:\int\:\:\:\frac{\mathrm{1}}{{t}\left(\:\mathrm{1}+{t}\right)}\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:{dt} \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{2}}\:\int\:\:\:\frac{\sqrt{{t}}}{{t}\left(\mathrm{1}+{t}\right)}{dt}\:\:{and}\:{changement}\:\sqrt{{t}}\:\:={x}\:{give} \\ $$$${I}\:\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\int\:\:\:\frac{{x}}{{x}^{\mathrm{2}} \left(\:\mathrm{1}+{x}^{\mathrm{2}} \right)}\:\mathrm{2}{x}\:{dx} \\ $$$$=\:\mathrm{3}\:\int\:\:\:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\:\mathrm{3}\:{arctanx}\:+{c} \\ $$$$=\mathrm{3}\:{arctan}\left({t}\sqrt{{t}}\right)\:+{c}\:. \\ $$$$ \\ $$

Answered by Joel579 last updated on 03/Jun/18

I = ∫ (dx/(x^(2/3) (1 + x^(2/3) )))   (t = x^(1/3)   →  dt = (x^(−2/3) /3) dx  ⇔  dx = 3t^2  dt)     = ∫ ((3t^2 )/(t^2 (1 + t^2 ))) dt     = 3 tan^(−1) (t) + C     = 3 tan^(−1) (x^(1/3) ) + C

$${I}\:=\:\int\:\frac{{dx}}{{x}^{\mathrm{2}/\mathrm{3}} \left(\mathrm{1}\:+\:{x}^{\mathrm{2}/\mathrm{3}} \right)}\:\:\:\left({t}\:=\:{x}^{\mathrm{1}/\mathrm{3}} \:\:\rightarrow\:\:{dt}\:=\:\frac{{x}^{−\mathrm{2}/\mathrm{3}} }{\mathrm{3}}\:{dx}\:\:\Leftrightarrow\:\:{dx}\:=\:\mathrm{3}{t}^{\mathrm{2}} \:{dt}\right) \\ $$$$\:\:\:=\:\int\:\frac{\mathrm{3}{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} \left(\mathrm{1}\:+\:{t}^{\mathrm{2}} \right)}\:{dt} \\ $$$$\:\:\:=\:\mathrm{3}\:\mathrm{tan}^{−\mathrm{1}} \left({t}\right)\:+\:{C} \\ $$$$\:\:\:=\:\mathrm{3}\:\mathrm{tan}^{−\mathrm{1}} \left({x}^{\mathrm{1}/\mathrm{3}} \right)\:+\:{C} \\ $$

Answered by sma3l2996 last updated on 03/Jun/18

let  t=x^(1/3) ⇒dt=(dx/(3x^(2/3) ))  x^(2/3) =t^2   ∫(dx/(x^(2/3) (1+x^(2/3) )))=3∫(dt/(1+t^2 ))=3tan^(−1) (t)+C  =3tan^(−1) (x^(1/3) )+C

$${let}\:\:{t}={x}^{\mathrm{1}/\mathrm{3}} \Rightarrow{dt}=\frac{{dx}}{\mathrm{3}{x}^{\mathrm{2}/\mathrm{3}} } \\ $$$${x}^{\mathrm{2}/\mathrm{3}} ={t}^{\mathrm{2}} \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}/\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{2}/\mathrm{3}} \right)}=\mathrm{3}\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }=\mathrm{3}{tan}^{−\mathrm{1}} \left({t}\right)+{C} \\ $$$$=\mathrm{3}{tan}^{−\mathrm{1}} \left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com